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Abstract
Binary code size is a first-class design consideration in many
computing domains and a critical factor in many more, but
compiler optimizations targeting code size are few and often
limited in functionality. When size reduction opportunities
are left unexploited, it results in higher downstream costs
such as memory, storage, bandwidth, or programmer time.

We present HyBF , a framework to manage code merging
techniques that target conditional branches (i.e., if-then-else)
with similar code regions on both paths. While such code
can be easily and profitably merged with little control flow
overhead, existing techniques generally fail to fully handle it.
Our work is inspired by branch fusion, a technique for merg-
ing similar code in if-then-else statements, which is aimed
at reducing thread divergence in GPUs. We introduce two
new branch fusion techniques that can be applied to almost
any if-then-else statement and can uncover many more code
merging opportunities. The two approaches are mostly or-
thogonal and have different limitations and strengths. We
integrate them into a single framework, HyBF , which can
choose the optimal approach on a per branch basis to maxi-
mize the potential of reducing code size.
Our results show that we can achieve significant code

savings on top of already heavily optimized binaries using
state-of-the-art code size optimizations. Over 61 benchmarks,
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we reduce the code size on 43 of them. That reduction typ-
ically ranges from a few hundred to a few thousand bytes,
but for specific benchmarks, it can be substantial and as high
as 4.2% or 67 KB.
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1 Introduction
Code size is critical for computing systems with constrained
resources. These systems operate under limited addressable
memory, storage, and bandwidth from tiny embedded de-
vices up to cloud servers. As programs gain new features over
time, continuously growing in size and complexity [4, 20],
they can eventually become excessively large relative to
the given constraints. This has a detrimental effect on the
system, ultimately causing its failure. In such scenarios, com-
piler optimizations for reducing the application’s footprint
are essential [2, 4, 18, 32, 33, 41].

Compilers provide optimizations that are tailored for code
reduction [13, 29], including dead-code elimination [39],
common sub-expression elimination [8], redundancy elimi-
nation [3], and constant propagation [42]. Recent develop-
ments on code size optimizations have focused on merging
equivalent code to avoid duplicates, which include function
merging, function outlining, and loop rolling. Function merg-
ing identifies functions with sufficient similarity and merges
them into a single function [14, 28–30]. Function outlining
identifies equivalent basic blocks across all functions and
extracts them into a function, replacing all the copies by a
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function call [4]. Loop rolling transforms equivalent instruc-
tions from a single block into a loop [27].
Despite all these efforts, state-of-the-art techniques still

cannot fully exploit code similarity to reduce code size. In
this paper, we identify such a missed opportunity: reducing
code size by merging similar code in branches that form
if-then-else constructs. This technique, known as branch fu-
sion, was originally proposed as an optimization for reducing
thread divergence in GPUs [10, 31]. Our key insight is that
branch fusion can be adapted to reducing code size. The
main barrier for that is the simplicity of existing techniques.
Branch fusion [10] only merges highly similar single-block
branch paths, while control-flow melding (DARM) [31] only
works on branch paths that contain simple control-flow re-
gions, e.g., nested if-then,if-then-else or natural loops, that
are isomorphic. DARM might be sufficient to cover certain
important GPU kernels, but its was not designed for code
size reduction and, it is not capable of handling complex
control-flow regions present in real-world CPU programs.

Our work introduces two novel branch fusion approaches
that overcome these limitations. The first one, Control-flow
Melding for Code Size (CFM-CS), adapts DARM [31] to re-
duce code size in CPU programs while extending it to sup-
port any complex Single-Entry-Single-Exit (SESE) regions
that can be present in real programs, including unstruc-
tured control-flow. The second one, SEME-Fusion, gener-
alizes function merging [28], enabling it to also work as
a branch fusion technique capable of merging any pair of
SEME regions inside a conditional branch using its flexible
matching approach allows us to uncover merging opportu-
nities in branches whose divergent paths have little struc-
tural similarity. The two techniques have different strengths
and limitations, uncovering different code-saving opportu-
nities. We combine them into a unified framework, HyBF ,
that chooses which one to apply on a branch-to-branch basis,
maximizing their potential.

The experimental results show that our approach is capa-
ble of significant code size reduction: up to 67KB and 3.1KB
on average, much higher than any individual branch fusion
approach on its own. We demonstrate that significant gains
are obtained on top of highly optimized programs including
state-of-the-art code size optimizations, such as function
merging [29, 36]. The compile-time overhead we pay for
this is low, less than 8% slowdown for half of the bench-
marks, 15.7% on average. The effect on the performance of
the generated binaries is negligible.

Our main contributions are:

• We are the first to employ branch fusion and control-
flow melding for code size reduction.

• We propose the first branch fusion technique capable
of merging any pair of SEME regions, regardless of
their structural similarity.

• We propose HyBF , a novel framework that combines
multiple branch fusion techniques to leverage their
individual strengths in different scenarios.

• An implementation of HyBF in LLVM that is publicly
available1.

• We show the effectiveness of our approach on full
benchmark programs as well as individual functions
extracted from real-world code.

2 Background and Motivation
In this section, we contrast the existing optimizations for
code size reduction on conditional branches. We also moti-
vate the need for a new branch fusion strategy tailored for
code size optimizations.

2.1 Code Motion
The two important code motion optimizations for code re-
duction are code hoisting and code sinking [7, 39]. Both tech-
niques replace multiple equivalent expressions (i.e., expres-
sion that produce the same value) with a single one. Code
hoisting inserts the unified expression in a common dom-
inator location, while code sinking places it in a common
post-dominator location.

2.2 Branch Fusion
Coutinho et al. [10] originally proposed an optimization
called branch fusion in order to reduce control-flow diver-
gence in GPU kernels and improve performance. Their tech-
niqueworks on diamond-shaped if-then-else constructs, where
each of the two paths contains a single basic block. For these
two blocks, they align and merge equivalent instructions
using sequence alignment. Instructions with the same op-
codes and data types are matched and merged, potentially
using extra conditional select statements to handle argu-
ment mismatches. Otherwise, the execution of mismatched
instructions is controlled through if-then-else constructs on
the same condition as the original branch. While code mo-
tion is based on value equivalence, branch fusion is based
only on opcode and type equivalence. However, while code
motion is able to move any amount of copies into a com-
mon location, branch fusion is limited to merging only pairs
of instructions, i.e., one from each side of the conditional
branch.
Our central insight is that branch fusion can also be em-

ployed for code size reduction. Figure 1 shows an example
of branch fusion in C code extracted from the Linux kernel.
Traditional local code motion optimizations, such as hoisting
and sinking, cannot merge the statements in the two paths
of the if-then-else. While both contain very similar calls to
rcu_btrace, but they are not equal in value, which is what
determines whether hoisting and sinking can be applied. On
the other hand, branch fusion merges code paths based on

1https://github.com/charitha22/hybf-cc23-artifact
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if (atomic_dec_test(&rcus.bcpucount)) {
 rcu_btrace(TPS("LastCB"), -1, rcus.bseq);
 complete(&rcus.bcompletion);

} else {
 rcu_btrace(TPS("CB"), -1, rcus.bseq);

}

(a) Before the state-of-the-art branch fusion.
cond = atomic_dec_test(&rcus.bcpucount);
str = cond?"LastCB":"CB";
rcu_btrace(TPS(str), -1, rcus.bseq);
if (cond) {
  complete(&rcus.bcompletion);
}

(b) After the state-of-the-art branch fusion.

Figure 1.Code extracted fromrcu_barrier_callback
in the Linux kernel. Matching statements are highlighted
in green, and mismatched (sub-)statements in red. In the
fused code (b), the mismatched arguments are handled with
a select statement (line 2), while the mismatched statement
(line 5) with an if on the original condition. This results in a
code size reduction of 18 bytes, or 11%.

their operation equivalence. Value differences are handled via
conditional value selection. Figure 1(b) shows the code after
branch fusion is applied.

2.3 Limitations of the State of the Art
A recent work has introduced DARM [31], a branch fusion
technique that exploits structural similarity in single-entry
single-exit (SESE) regions. Similar to Coutinho et al. [10],
DARM also aims at reducing thread divergence in GPU ker-
nels. However, exploiting structural similarity is quite im-
portant in reducing code size too. To further motivate this,
consider the code shown in Figure 2. This code contains an
if-else-if statement both cases of which call the same macro
DeleteNode (highlighted in Figure 2). Macro expansion
causes the branch to have isomorphic regions with highly
similar code, exactly the kind of code DARM handles effi-
ciently.

Although DARM is a significant improvement over its pre-
decessor, we have identified two major limitations with re-
gards to code size reduction: first, it is limited to SESE regions;
second, it depends on the two regions having structural sim-
ilarity. Figure 3 shows an example extracted from the Post-
greSQL database system [24], in the text_substring
function. None of the existing branch fusion techniques can
merge the two paths of the if-then-else: the original branch
fusion technique is limited to if-then-else constructs with a
single basic block on each side, while DARM can only handle
SESE regions. In contrast, each side of the if-then-else con-
struct in the example is a single-entry multiple-exit (SEME)
region: some statements transfer control to the end of the
if-then-else, while the return statements transfer control out-
side the function. Even if we unify all the return instructions
(a common transformation), the code still has two distinct
exit points which cannot be handled by either of the existing

if ( prnt_flush ) {
 Parent(prnt, Up(dest_index));
 if ( kill )  DeleteNode(dest_index);
 debug0(DGF, DD, "calling FlushGalley...");
 FlushGalley(prnt);

} else
 if ( kill )  DeleteNode(dest_index)

#define DeleteNode(x) { \
 xx_hold = (x); \
 while ( Up(xx_hold) != xx_hold ) \
   DeleteLink( Up(xx_hold) ); \
 while ( Down(xx_hold) != xx_hold ) \
   DeleteLink( Down(xx_hold) ); \
 Dispose(xx_hold); \

}

Figure 2. Code snippet extracted from file z20.c in
MiBench typeset benchmark

branch fusion techniques. Despite that, there is significant
potential in merging the two regions. The true-side and the
false-side regions have 7 and 31 basic blocks, respectively, out
of which, 5 pairs (10 blocks in total) can be perfectly aligned.
Overall, 24.4% of the LLVM instructions are mergeable.
The second major limitation that we have identified in

DARM concerns its restriction on merging only regions
with structural similarity (i.e., SESE regions with isomorphic
control-flow graphs). Regions with non-isomorphic control-
flow graphs can still have enough code similarity to prof-
itably merge them. Therefore, we propose SEME-Fusion a
technique that can merge SEME regions without the isomor-
phism requirement.
Another important observation is that none of DARM

or SEME-Fusion can be the best fusion technique for given
CFG. SEME-Fusionworks best for the code shown in Figure 3,
but DARM can extract the most similarity in Figure 2 because
its ability to match structurally similar regions works into its
advantage in that case. Therefore, we believe a combination
of these two techniques is needed to obtain the best of both
worlds. In the next sections: We describe how we adapt and
improve DARM for code reduction; We describe a novel
branch fusion technique that addresses the limitations of
DARM; Finally, we offer a branch fusion framework that
combines these techniques, taking advantage of all their
individual strengths.

3 A Branch Fusion Framework for Code
Size Reduction

In this section, we introduceHyBF , a framework for code size
oriented branch fusion. The proposed framework reduces
code size using a three step process. First, we find conditional
branches and we collect their two disjoint regions that repre-
sent the then and the else paths. Second, we attempt to merge
the two regions using one or more branch fusion techniques.
Here we consider the following two novel techniques:
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if (eml == 1) {
 S1 = Max(S, 1);
 if (length_not_specified)
   L1 = -1;
 else {
   int  E = S + length;
   if (E < S)
     ereport(ERROR, errcode, errmsg);
   if (E < 1)
     return cstring_to_text("");
   L1 = E - S1;
 }
 return DatumGetTextPSlice(str, S1-1, L1);

} else {
 if (eml > 1) {
   S1 = Max(S, 1);
   slice_start = 0;
   if (length_not_specified)
     slice_size = L1 = -1;
   else {
     int E = S + length;
     if (E < S)
       ereport(ERROR, errcode, errmsg);
     if (E < 1)
       return cstring_to_text("");
     L1 = E - S1;
     slice_size = (S1+L1)*eml;
   }
   ...
   if (slice!=(text*)DatumGetPointer(str))
     pfree(slice);
   return ret;
 } else
   elog(ERROR, "invalid encoding");

}

Figure 3. Code extracted from text_substring in the
PostgreSQL database system. Matching statements are high-
lighted in green, and mismatched (sub-)statements in red.
This if-then-else example contains two SEME regions.

• Control-flowmelding for code size (CFM-CS) that
focuses on merging isomorphic SESE regions.

• Single-entry-multiple-exit branch fusion (SEME-
Fusion) that can merge SEME regions without the
restriction of structural similarity.

The best approach for each specific conditional branch de-
pends on the CFG and the instructions in the two paths of
the branch. CFM-CS may work best for branches with highly
similar code structure, while SEME-Fusion is preferred when
the two sides of the branch have multiple exits and/or low
structural similarity.
The third and final step is to apply both branch fusion

techniques on every candidate branch. We perform a prof-
itability analysis using a code-size cost model to determine
whether any technique results in smaller code than the orig-
inal if-then-else construct. If both reduce the code size, we
keep the output of the best one and discard the other.

Collect
Branch Instructions 

CFM-CS

Analyze
Profitability

Replace Branch by
Smallest Alternative

No Branch Remaining

SEME-Fusion

Merging                                          Techniques

Figure 4. Overview of the HyBF framework.

entry

if.then if.else

if.end

(a) A control-flow graph with
its regions highlighted.

if.then if.else

if.else
if.then
entry

if.else
if.then
entry

if.end

(b) Region hierarchy
graph.

Figure 5. A simple control-flow graph and its region hierar-
chy graph.

3.1 Searching for Conditional Branches
Given an input function, we search for conditional branches
that represent an if-then-else construct. For each conditional
branch, we collect their two disjoint regions that represent
the then and the else paths. Different branch fusion tech-
niques considered in this paper have different limitations on
which regions they are capable of merging. State-of-the-art
branch fusion [10] can merge only single basic blocks. CFM-
CS, which we describe in more detail in Section 4, works
on single-entry single-exit (SESE) regions. SEME-Fusion, de-
scribed in Section 5, works on single-entry multiple-exit
(SEME) regions. Therefore, we use different filtering strate-
gies for each technique we explore in this paper.
Since both SESE and SEME regions can themselves in-

clude other conditional branches, the traversal order may
also affect the end result. In both cases, we can construct
a region hierarchy graph, as illustrated in Figure 5, and de-
cide between either a top-down or a bottom-up traversal.
A bottom-up traversal starts from the inner-most regions
and progress to the outer-most ones, while the top-down tra-
versal goes from the outer to the inner-most regions. While
smaller regions are more likely to contain greater similarities,
merging larger regions can result in larger reductions.
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3.2 Profitability Analysis
When merging two non-identical regions from a conditional
branch, the extra code necessary for handling their differ-
ences might result in an overall code increase. Therefore,
we need to identify opportunities where branch fusion is
profitable and reduces code size. To this end, we employ a
profitability analysis. The final decision is based on estimates
of the code-size costs for both the merged and the original
if-then-else. The version with the smallest estimated code
size is chosen.
The profitability is measured with the help of the com-

piler’s target-specific cost model. The cost of each instruc-
tion comes from querying the compiler’s built-in cost model,
which provides a cost estimation that approximates the size
of an IR instruction when lowered to the target machine.
We use the code-size cost model provided by LLVM’s target-
transformation interface (TTI), which is used in the decision
making of most optimizations [30, 40].

4 Control-Flow Melding
Control-flow Melding [31] (DARM) is a code optimization
technique used for reducing control-flow divergence in GPU
programs. DARM reduces divergence by merging similar
control-flow regions contained within divergent branches
of the CFG. Previous compiler-based divergence reduction
techniques such as Tail Merging and Branch Fusion are un-
able to merge control-flow beyond basic block boundaries.
Therefore, they have limited applicability in real-world pro-
grams. DARM was proposed to fill this gap and enable merg-
ing control-flow at region level. DARM works by merging
structurally similar (i.e., isomorphic) single-entry single-exit
(SESE) regions within if-then-else branches. Even though
the general idea of merging similar control-flow regions is
applicable to real-world programs, DARM’s implementation
is fairly restrictive as it only supports merging simple nested
if/if-else statements and loops inside if-then-else branches.

In this work, we extend and adapt DARM to reduce code
size in CPU programs. In the following sections we describe
the main steps in Control-flow Melding for Code Size Reduc-
tion (CFM-CS). Figure 6 shows the main stages of CFM-CS.

4.1 Identifying Regions for Melding
The first step of CFM-CS is identifying on which locations
to apply the transformation. As described in Section 3.1,
CFM-CS is applicable to if-then-else constructs that contains
isomorphic control-flow regions. To formally describe the
conditions that a valid location must satisfy, consider the
CFG in Figure 6 a○. This CFG contains a basic block 𝐸 with
a conditional branch at its end. Basic blocks 𝐿 and 𝑅 be the
two successors of 𝐸. Let 𝑋 be the immediate post-dominator
of 𝐸. 𝐸 dominates all basic blocks contained within the SESE
region 𝐸-𝑋 . 𝐸 is considered to be a valid location for our
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Figure 6. CFM-CS overview. (a) Given an if-then-else state-
ment, (b) we identify isomorphic control-flow in the two re-
gions, and (c) we align and merge the corresponding blocks.

transformation if there exist no paths in the CFG from 𝐸 to
𝑋 that goes through both 𝐿 and 𝑅. This ensures that either 𝐿
or 𝑅 is executed at a time but not both, enabling us to at least
merge the common computations within 𝐿 and 𝑅. If there
exists a path from 𝐿 to 𝑅 at least one predecessor of 𝑅 must
be dominated by 𝐿 because all program paths from 𝐸 to 𝑋
must go through either 𝐿 or 𝑅. We use this property to check
non-existence of paths from 𝐿-𝑅 or 𝑅-𝐿. In addition, basic
blocks contained within 𝐸-𝑋 must not contain unhandled
instructions for CFM-CS to be applicable2.
The next step of CFM-CS is to collect all the subregions

contained with the parent region of 𝐸-𝑋 . We employ LLVM’s
region tree (i.e., region hierarchy graph) [17] data structure
to do this. We collect subregions along the left path (from
𝐿 to 𝑋 ) and right path (from 𝑅 to 𝑋 ). Each subregion is
selected such that subregion entry is dominated by 𝐿 or
𝑅 and subregion exit post-dominates 𝐿 or 𝑅. For example,
the CFG in Figure 6 a○ has the subregion 𝐿-𝑆 on left path
and subregions 𝑅-𝑇 ,𝑇 -𝑈 on the right path. Any isomorphic
SESE subregion pair consisting of one subregion from left
and right paths can be merged to potentially reduce code
size. We use a heuristic-based approach based on instruction
frequencies and their size cost to determine what isomorphic
subregion pairs to merge. Isomorphic SESE subregions with
more similar instructions are more profitable to be merged
together. We formulate this as a sequence alignment problem
and solve it using the Smith-Waterman algorithm [34]. For
example, in Figure 6 b○ isomorphic subregions 𝐿-𝑆 and 𝑇 -𝑈
are aligned together and their corresponding basic blocks
(shown connected with light blue bars) can be merged.

2Even though this is not a strict limitation of CFM-CS transformation, we
do not merge regions containing switch-case constructs
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4.2 CFM-CS Code Generation
We compute an instruction alignment similar to DARM [31]
or HyFM [28], to generate the final merged regions. Instruc-
tion alignment is computed for each corresponding basic
block pair in aligned subregions. In Figure 6 b○ portions of
basic blocks with perfectly aligned instructions are shown
in green and unaligned portions are shown in red. We use
instruction alignment to generate the final merged code
(shown in Figure 6 c○). The aligned instructions are replaced
with merged instructions that use select instructions to pick
their operands, while the unaligned instructions are moved
to new basic blocks and executed conditionally. For example,
matched basic blocks 𝑃 and 𝑄 have both aligned and un-
aligned portions and the final merged CFG for these blocks
are shown zoomed-in on Figure 6 c○. Note that the orange
colored blocks are not necessarily basic blocks but control-
flow subgraphs. We use the branching condition at block 𝐸

as the distinguishing predicate for the select operations as
well as for conditionally executing unaligned instructions.

4.3 Region Replication
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Figure 7. Region replication example

CFM-CS is only capable of merging isomorphic regions,
however there is one exception.When one path contains only
a single basic block and the other path contains region(s),
CFM-CS can still be applied by using Region Replication.
The idea here is to replicate a region and place the single
basic block in a convenient location to enable profitable
merging. Region replicationwas first proposed in DARM [31]
to merge basic blocks in if-else-if chains to reduce control-
flow divergence. Their implementation did not support more
complex control-flow patterns because the primary focus
was to reduce divergence in some select control-flow patterns
seen in GPU kernels. We build on top of DARM and provide
a more general region replication approach that is applicable
to code size reduction in CPU programs. We use example
CFGs shown in Figure 7 to explain how region replication
works. The input CFG (block 𝐿 in Figure 7 a○) contains a
single basic block on the left path and a subregion in the
right path. Assume that the computations done in blocks 𝐿
and 𝐷 are similar and merging them is profitable. First we
replicate the right subregion 𝑅-𝑈 and create a new subregion

𝑀-𝑂 (Figure 7 b○). And then we place 𝐿 on a corresponding
position to 𝐷 . This creates two isomorphic regions and we
can apply CFM-CS region merging approach3. We also make
sure values produced in 𝐿 will reach their external users by
inserting 𝜙 nodes at 𝐿’s new dominance frontiers (in this
case 𝐿 has two dominance frontiers 𝑁 and𝑂). We concretize
the path conditions on region𝑀-𝑂 to make sure 𝐿 is always
executed (concretized path 𝑀 → 𝐿 → 𝑂 is shown in red)
and also make sure phi-nodes in block 𝑋 pick the correct
incoming values based on the chosen path.

5 Branch Fusion for SEME Regions
CFM-CS uses techniques inspired by function merging [28]
to align and merge already matched basic blocks. A more
straightforward approach is to generalize function merg-
ing and apply it directly on the two paths of an if-then-else
statement. This section explains this novel branch fusion
approach, SEME-Fusion. It expands the state-of-the-art func-
tion merging technique [28, 36], which uses an alignment
strategy for identifying similarities.

5.1 Extracting SEME Regions from Branches
For each conditional branch, we need to identify if it repre-
sents a valid if-then-else construct. To this end, we collect
the two maximal SEME regions starting from the two suc-
cessors of the conditional branch, following the then and else
paths. A SEME region is a control-flow graph with a single
incoming edge where the entry block dominates all other
basic blocks in the region. The SEME region ismaximal if no
external block adjacent to the SEME region is also dominated
by the entry block.

5.2 Merging Two SEME Regions

Block Pairing

Sequence Alignment

Code Generation

True False

Figure 8. Overview of the SEME-Fusion technique.

Since a function is also a SEME region, we can leverage
existing function merging techniques, adapting them for
3Alternatively, blocks 𝐿 and 𝐷 in Figure 7 a○ can be merged directly and
direct jumps from 𝐸 → 𝐷 and 𝐷 → 𝑋 can be inserted to ensure correct
control. CFM-CS does not use this approach because applying it recursively
can make the CFG more complex/unstructured and unamenable to other
optimizations including CFM-CS
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branch fusion [28–30, 36]. Ourmerging technique is based on
the HyFM function merging technique [28], which can effi-
ciently merge any two functions. Figure 8 shows an overview
of our novel branch fusion technique.
Our merging technique works at the basic-block level.

Given a conditional branch and its two SEME regions, first
we generate a fixed-vector representation for all their basic
blocks, namely, their fingerprint [29, 30]. We pair similar
basic blocks across the two SEME regions based on their
fingerprint distances. For each selected pair of basic blocks,
we use linear pairwise alignment [28] to identify matching
segments of equivalent instructions across the pair.
Then, we employ the first-tier profitability analysis on

the resulting alignment to decide whether this pair of ba-
sic blocks will be merged or not. The first-tier profitability
analysis consists of a simple analysis applied on each pair of
basic blocks selected for alignment. If the cost model deems
it unprofitable, we discard this pair and its alignment, freeing
the basic blocks to be paired with others. The pairing of basic
blocks, the alignment, and the first-tier profitability analysis
are executed in rounds, in a greedy manner.

Once all basic blocks have been processed, we use the re-
sulting alignments to generate the code of the merged region:
aligned instructions are replaced by a single instruction in
the merged code, while blocks of unaligned instructions are
copied as they are, but with their execution conditional on
the if-then-else condition. If no pair of basic blocks with a
profitable alignment was found, we bail out early.

5.3 Adjusting Phi-Nodes in the Exit Blocks
After branch fusion, we need to adjust the list of incoming
blocks of the phi-nodes in the exit blocks. Incoming values
from basic blocks outside the two regions are kept as they
are. For incoming values from either one of the original
SEME regions, in the general case, we simply remap them
to their corresponding values in the merged region, where
their incoming basic blocks are also remapped accordingly.
Figure 9 illustrates a special case. If a phi-node of an exit

block has two incoming basic blocks that have been merged,
we also need to merge the two corresponding incoming val-
ues, as shown in Figure 9b. Since one incoming block is from
the true-side region of the conditional branch and the other
is from the false-side region, we can use the same branch con-
dition to select between the two incoming values. Therefore,
we simply add a select instruction in the merged block
to select between the two corresponding values depending
on the branch condition. Note that same strategy is used in
CFM-CS when merging regions exits that have a common
successor that includes phi-nodes.

6 Evaluation
In this section, we evaluate our branch fusion framework
and the different merging techniques. We implementedHyBF

  %p = phi [%v1, L1], [%v2, L2], [%v3, L3]

  ...

  %v1 = ... 

  L1 
  %v3 = ... 

  L3 

True-side Region False-side Region

  %v2 = ... 

  L2 

  L4 

 br  L4  br  L4 

(a) The original code before branch fusion.

  %p = phi [%s, L12], [%v3, L3]

  ...

  %v1 = ... 

  L12   %v3 = ... 

  L3 

Merged Region

  %v2 = ... 

  %s = select %cond, %v1, %v2

  br  L4

  L4 

(b) After branch fusion, value selections are added to the merged
incoming blocks.

Figure 9. Example illustrating how a phi-node in an exit
block must be adjusted when its incoming blocks are merged.

and its two component techniques, CFM-CS from Section 4
and SEME-Fusion from Section 5 as LLVM transformation
passes4. HyBF can be implemented on any static single as-
signment (SSA) [11] based intermediate representation and
does not depend on any LLVM-IR specific feature to the
best of our knowledge. We apply our transformations to-
gether with -Oz. We place branch fusion after the classic
redundancy elimination and code motion passes, as they can
be negatively affected by branch fusion. We also evaluate
the gains achieved by branch fusion on top of the state-of-
the-art function merging [28, 36] technique in LTO mode.
We evaluate HyBF , the two individual techniques, and the
no-fusion baseline on four different benchmark suites: Ang-
haBench [12], MiBench [16], SPEC 2006, and SPEC 2017 [35].
These benchmarks cover a variety of applications includ-
ing compilers, interpreters, typesetting, 3D rendering, and
cryptography.

We perform all experiments on a server with two octa-core
Intel Xeon E5-2650 processors and 64 GiB of RAM, running
Ubuntu 18.04.3 LTS. For timing measurements, we repeat all
experiments 10 times to minimize the effect of measurement
noise. We test whether different sets of measurements are
statistically indistinguishable using the t-test with p < 5%.

6.1 Code Size Reduction
Figure 10 shows the code size reduction achieved by the
different techniques on the MiBench and SPEC 2017 bench-
mark suites. We show both the absolute and the relative
4LLVM-14.0
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Figure 10. Code size reduction on full programs fromMiBench and SPEC 2017. Top part of each sub-figure shows the reduction
(relative to the baseline) in bytes. Below that is the relative reduction in %. At the bottom is the number of profitable fusion
operations applied. HyBF reduces code size in 43 out of the 61 benchmarks considered, achieving up to 4.2% code size reduction.

reduction in the text section of the final binary over the base-
line. We also show how many branch fusion operations were
successfully performed by each version, according to the
profitability analysis.

Across all three suites, it is clear that neither CFM-CS nor
SEME-Fusion suffices by itself. CFM-CS does better for 22
benchmarks but SEME-Fusion outperforms it for 20. Using
only one of the two techniques is suboptimal.HyBF allows us
to pick and choose the best one for each individual branch, as
determined by the compiler’s cost model. As a result, HyBF
outperforms both techniques.
There are a few corner cases where this is not true. An

example is 456.hmmer where SEME-Fusion has a small
gain over HyBF . For branches that can be fused by both
CFM-CS and SEME-Fusion, HyBF relies on the compiler’s
cost model to decide which one produces the smallest merged
code. Due to inaccuracies of the cost model, some of these
decisions can be sub-optimal.
On MiBench, a benchmark suite for embedded systems,

CFM-CS was the best individual technique, reducing code

size by 333 bytes on average, while SEME-Fusion achieved
an average reduction of 192 bytes. HyBF combined the best
cases of the two techniques, achieving an average reduction
of 482 bytes. Unsurprisingly, the two largest MiBench pro-
grams, namely, ghostscript and typeset, with 3446
and 362 functions, respectively, also have the highest number
of successful branch fusions.

On SPEC 2017, SEME-Fusion was the best individual tech-
nique, achieving an average reduction of 6759 bytes com-
pared to 1575.3 bytes by CFM-CS alone. Again, HyBF com-
bines their best cases, reducing code size by 8167.7 bytes
on average. The best case is for 638.imagick_s, where
HyBF applies 488 successful branch fusion operations and
reduces size by 67 KB, a 4.2% reduction compared to the
no-fusion baseline. This is an interesting example because
CFM-CS and SEME-Fusion have very different effects: CFM-
CS alone increases size by 200 bytes, with almost all the code
size reduction coming from SEME-Fusion. Again, HyBF out-
performs both which shows that choosing the best technique
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on a branch-by-branch basis is the superior approach. Over-
all, SEME-Fusion outperforms CFM-CS and HyBF extracts
the best of both techniques.
We have also evaluated on SPEC 2006, where the results

follow a very similar pattern to SPEC 2017. HyBF achieves
an average reduction of 1760 bytes, outperforming both tech-
niques individually. As in the case of SPEC 2017, on average,
SEME-Fusion outperforms CFM-CS.
There are also some cases where branch fusion leads to

some small code degradation, where inaccuracies in the cost
model mislead the profitability analysis. These are common
when there are only a few successful branch fusion oper-
ations, as shown in Figure 10. For programs with several
successful branch fusion operations, large gains tend to out-
weigh some small losses caused by misjudgments of the
profitability analysis.

6.1.1 Effectiveness on Real-World Code. We also test
the effectiveness of branch fusion on real-world code us-
ing the AnghaBench suite [12]. AnghaBench provides one
million compilable functions which were extracted from the
most popular GitHub repositories with C source files. This in-
cludes well-known repositories such as PostgreSQL, numpy,
Linux, FFmpeg, etc.
Figure 11 shows how well we do on real-world code. It

plots the relative reduction achieved by CFM-CS and HyBF
in terms of LLVM-IR instructions for the 17.6k functions that
are visibly affected by at least one of the techniques. Beyond
achieving significant code size reduction, up to 60%, the plot
highlights again the importance of using different branch
fusion techniques in a coordinated way. CFM-CS alone finds
several opportunities but in most cases, HyBF either matches
or surpasses it. For almost 6500 functions where CFM-CS
has no impact, HyBF finds enough opportunities, in some
cases reducing their size by up to 50%.

There are also cases where branch fusion leads to code in-
crease. As previously discussed, these regressions stem from
inaccuracies in the cost model. The main one has to do with
the cost of phi-nodes. To handle the merged control flows,
our branch fusion approaches often add a significant number
of extra phi-nodes, even in otherwise small functions. Be-
cause phi-nodes usually have a small cost, compared to other
instruction opcodes at least, branch fusion may lead to an
overall increase in the number of LLVM-IR instructions. For
small functions, this result in a relatively large regressions.

6.1.2 ComparisonBetweenCFM-CS and SEME-Fusion.
In full programs, there are several benchmarks where CFM-
CS outperforms SEME-Fusion. While the reduction in binary
size is a result of applying the merging transformations at
multiple locations in multiple source files in these bench-
marks, we found several interesting functions where CFM-
CS does clearly better than SEME-Fusion. One such case is
shown in Figure 2 (Section 2). As described in Section 2.3,
this function happens to have isomorphic code regions with
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Figure 11. LLVM-IR size reduction for CFM-CS and HyBF
on 17.6k real-world functions from AnghaBench. x-axis is
function id and is sorted by reduction for CFM-CS.

highly similar code and applying CFM-CS results in LLVM-IR
size reduction of 29%.
SEME-Fusion is also applicable on this branch but it can-

not pair the identical CFGs directly. Its pairing strategy is
basic block based and does not take the overall CFGs into
account. Moreover, when using the pairwise alignment, as
proposed by HyFM [28], SEME-Fusion can only pair basic
blocks with the same number of instructions. In this case,
the matched blocks are not the equivalent blocks in the two
identical CFGs. This results in unnecessary overhead for
handling the divergent control flow inside the merged code,
including operand selections, phi-nodes, and branches. This
extra complexity renders the merged code unprofitable.

However, there are also several cases where SEME-Fusion
outperforms CFM-CS. As discussed in Section 2.3, DARM and
therefore CFM-CS, has several limitations that are specif-
ically addressed by SEME-Fusion. First, for regions with
multiple blocks but no structural similarity, CFM-CS is in-
sufficient, while SEME-Fusion can still identify pairs of basic
blocks that are worth merging between those two regions.
Second, SEME-Fusion is the only technique capable of merg-
ing branches with SEME regions. In fact, only SEME-Fusion
could have merged the code shown in Figure 3, reducing the
size of the IR of this function by 25 instructions and of the
final binary by 101 bytes.
The major benefit of HyBF is that it can take advantage

of the different strengths of both CFM-CS and SEME-Fusion,
whichever suits each branch best.

6.1.3 Comparison with Function Merging. Function
merging is an important code size optimization, where re-
cent work has shown significant reduction gains [26, 28].
In this section, we analyze the interaction between branch
fusion and function merging. While function merging works
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Figure 12. Average code size reduction on top of the state-
of-the-art function merging on LTO mode.

at the function level as an inter-procedural optimization,
branch fusion works at the region level within single func-
tions. Although the two optimizations are complementary
to each other, the extra complexity added by branch fusion
to regions of a given function can reduce its similarity to
other functions, affecting function merging.

Our evaluation shows that HyBF is able to offer additional
reduction gains on top of function merging while having a
negligible impact on the total number of merged functions.
Across the SPEC 2017 benchmark suite, HyFM achieves a
total of 8194 profitable merge operations with HyBF disabled
versus 8180 with it enabled, i.e., this is a reduction of 0.2%
on the total number of merged functions. On the other hand,
across all SPEC 2017 programs, HyBF achieves a total of
2898 profitable branch fusion operations, reducing a total of
253.4 KB on top of the already highly optimized binaries with
HyFM in LTO mode. This represents a significant gain if we
compare to enabling only either CFM-CS or SEME-Fusion,
where we achieve a total of 59.4 KB or 192.4 KB, respectively.
Figure 12 shows the average percentage reduction achieved
on top of HyFM across all programs of each benchmark suite.

7 Related Work
Compiler-based code size reduction is important for fitting
large programs to resource-constraint embedding devices.
Previous approaches reduce code size by replacing a code
segment with a smaller, semantically-equivalent implemen-
tation [23, 38], deleting unnecessary code [9, 19], combin-
ing redundant code within a function [5, 8] or across func-
tions [4, 22]. Function merging falls into the later category.

Established compilers like GCC and LLVM [1, 21] provide
an optimization formerging identical functions at the IR level.
They can only handle type mismatches that can be losslessly
cast to the same format. Von Koch et al. [14] extended this
idea into merging nearly identical functions. They restrict
merging to functions with the same signature, and identical
control-flow graphs. In addition, corresponding blocks of
the functions must have the same number of instructions.
Paired instructions are allowed to have different opcodes or
list of arguments but must have equivalent data types.
Rocha et al. [29, 30] was the first to propose a code-size

optimization capable of merging arbitrary pairs of functions.

They employ a sequence alignment algorithm to find equiva-
lent code segments that can be merged into a single function,
while themismatching segments of code are also added to the
merged function but have their code guarded by a function
identifier. More recently, they have proposed HyFM [28, 37],
where they avoid the quadratic aspect of the alignment op-
eration in two folds: first, HyFM works on the basic block
level, reducing the granularity of the inputs for the alignment
algorithm in practice; second, it employs a simpler linear
alignment strategy.

Loop rolling is another important code-size optimization
that works by merging similar code into a loop [15, 26]. The
state-of-the-art technique, RoLAG [26], searches for isomor-
phic instructions within a single basic block and builds an
alignment graph representing the groups of isomorphic in-
structions that can be rolled into a loop. While both loop
rolling and branch fusion work within functions, they ex-
ploit different opportunities for merging similar code, since
the former considers similarities within a basic block while
branch fusion consider similarities across the regions that
form an if-then-else construction.
Chen et al. proposed Generalized Tail Merging for code

size reduction [6]. This extends the tail merging to work on
isomorphic SEME regions. Although conceptually similar
to CFM-CS, this technique does not use instruction align-
ment and requires instructions inside the SEME regions to
be nearly identical. This restricts the applicability of gen-
eralized tail merging to a subset of cases that CFM-CS can
handle. In contrast, SEME-Fusion does not require structural
similarity both these techniques require.
8 Conclusion
Existing optimizations such as tail merging, branch fusion,
code hoisting/sinking only merge instructions on branch
paths that contain single basic blocks. Therefore, they have
limited applicability in real-world programs. We observe that
in many applications there are plenty of opportunities to
merge branch paths that contain multiple basic blocks. We
propose HyBF , a new hybrid approach for code size reduc-
tion at conditional branches. HyBF incorporates two new
techniques, CFM-CS that merges isomorphic SESE regions
and SEME-Fusion that can merge SEME regions within con-
ditional branches. Our evaluation shows that HyBF achieves
the best of both worlds by picking the best technique for a
given program location to maximally reduce code size.
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