
DARM: Control-Flow Melding for SIMT Thread

Divergence Reduction

Charitha Saumya, Kirshanthan Sundararajah, and Milind Kulkarni

School of Electrical and Computer Engineering

Purdue University

West Lafayette, IN, USA

cgusthin@purdue.edu, ksundar@purdue.edu, milind@purdue.edu

Abstract—GPGPUs use the Single-Instruction-Multiple-
Thread (SIMT) execution model where a group of threads—
wavefront or warp—execute instructions in lockstep. When
threads in a group encounter a branching instruction, not
all threads in the group take the same path, a phenomenon
known as control-flow divergence. The control-flow divergence
causes performance degradation because both paths of the
branch must be executed one after the other. Prior research
has primarily addressed this issue through architectural
modifications. We observe that certain GPGPU kernels with
control-flow divergence have similar control-flow structures with
similar instructions on both sides of a branch. This structure
can be exploited to reduce control-flow divergence by melding
the two sides of the branch allowing threads to reconverge early,
reducing divergence. In this work, we present DARM, a compiler
analysis and transformation framework that can meld divergent
control-flow structures with similar instruction sequences. We
show that DARM can reduce the performance degradation from
control-flow divergence.

Index Terms—GPGPUs, Control-Flow Divergence, Compiler
Optimizations

I. INTRODUCTION

General Purpose Graphics Processing Units (GPGPU) are

capable of executing thousands of threads in parallel, effi-

ciently. Advancements in the programming models and com-

pilers for GPUs have made it much easier to write data-

parallel applications. Unfortunately, exploiting data parallelism

does not immediately translate to better performance. One key

reason for the lack of performance portability is that GPGPUs

are not capable of executing all the threads independently.

Instead threads are grouped together into units called warps,

and threads in a warp execute instructions in lockstep. This

is commonly referred to as the Single Instruction Multiple

Thread (SIMT) execution model.

The SIMT model suffers performance degradation when

threads exhibit irregularity and can no longer execute in lock-

step. Irregularity comes in two forms, irregularity in memory

accesses patterns (i.e. memory divergence) and irregularity in

the control-flow of the program (i.e. control-flow divergence).

Memory divergence occurs when GPGPU threads needs to

access memory at non-uniform locations, which results in un-

coalesced memory accesses. Un-coalesced memory accesses

are bad for GPU performance because memory bandwidth can

not be fully utilized to do useful work.

TABLE I
COMPARISON OF TECHNIQUES FOR DIVERGENCE REDUCTION

Control-flow and instruction

Pattern

Technique

Tail
Merging

Branch
Fusion

DARM

Diamond control-flow with
identical instruction sequences

✓ ✓ ✓

Diamond control-flow with
distinct instruction sequences

✗ ✓ ✓

Complex control-flow ✗ ✗ ✓

Control-flow divergence occurs when threads in a warp

diverge at branch instructions. At the diverging branch, lock-

step execution can not be maintained because threads in a

warp may want to execute different basic bocks (i.e. diverge).

Instead, when executing instructions along a diverged path,

GPGPUs mask out the threads that do not want to take

that path. The threads reconverge at the Immediate Post-

DOMinator (IPDOM) of a divergent branch—the instruction

that all threads from both branches want to execute. This style

of IPDOM-based reconvergence is implemented in hardware

in most GPGPU architectures to maintain SIMT execution.

Even though IPDOM-based reconvergence can handle arbi-

trary control-flow, it imposes a significant performance penalty

if a program has a lot of divergent branches. In the IP-

DOM reconvergence model, instructions executed on divergent

branches necessarily cannot utilize the full width of a SIMD

unit. If the code has a lot of nested divergent branches or

divergent branches inside loops, this style of execution causes

significant under-utilization of SIMD resources.

For some GPGPU applications divergent branches are un-

avoidable, and there have been many techniques proposed to

address this issue both in hardware and software. Proposals

such as Dynamic warp formation [1], Thread block com-

paction [2] and Dual-path execution [3] focus on mitigating

the problem at the hardware level by changing how threads

are scheduled for execution and making sure that threads

following the same path are grouped together. Unfortunately,

such approaches are not useful on commodity GPGPUs.

There have also been efforts to reduce divergence through

compiler approaches that leverage the observation that dif-

ferent control-flow paths often contain similar instruction

(sub)sequences. Tail merging [4] identifies branches that have

identical sequences of code and introduces early jumps to

978-1-6654-0584-3/22 © 2022 IEEE

Accepted for publication by IEEE. © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

28

https://www.acm.org/publications/policies/artifact-review-and-badging-current

merged basic blocks, with the effect of reducing divergence.

Branch fusion generalizes tail merging to work with instruction

sequences that may not be identical [5]. However, branch

fusion cannot analyze complex control-flow and hence it is

restricted to simple if-then-else branches where each path has

a single basic block (i.e. diamond-shaped control-flow).

This paper introduces a more general, software-only ap-

proach of exploiting similarity in divergent paths, called

control-flow melding. Control-flow melding is a general

control-flow transformation which can meld similar control-

flow subgraphs inside a if-then-else region (not just individual

basic blocks). By working hierarchically, recursively melding

divergent control-flow at the level of subgraphs of the CFG,

control-flow melding can handle substantially more general

control structures than prior work. This paper describes DARM,

a realization of control-flow melding for general GPGPU

programs. Table I compares the capabilities of DARM with

branch fusion and tail merging.

DARM works in several steps. First, it detects divergent if-

then-else regions and splits the divergent regions into Single

Entry Single Exit (SESE) control-flow subgraphs. Next it uses

a hierarchical sequence alignment technique to meld profitable

control-flow subgraphs, repeatedly finding subgraphs whose

control-flow structures and constituent instructions can be

aligned. Once a fixpoint is reached, DARM uses this hierar-

chical alignment to generate code for the region with reduced

control-flow divergence.

The main contributions of the paper are,

• Divergence-Aware-Region-Melder (DARM), a realization of

control-flow melding that identifies profitable melding op-

portunities in divergent if-then-else regions of the control-

flow using a hierarchical sequence alignment approach and

then melds these regions to reduce control-flow divergence.

• An implementation of DARM in LLVM [6] that can be ap-

plied to GPGPU programs written in HIP [7] or CUDA [8].

Our implementation of DARM is publicly available as an

archival repository1 and up-to-date version is available in

GitHub2.

• An evaluation of DARM on a set of synthetic GPU programs

and a set of real-world GPU applications showing its effec-

tiveness

II. BACKGROUND

A. GPGPU Architecture

Modern GPGPUs have multiple processing cores, each of

which contains multiple parallel lanes (i.e. SIMD units), a

vector register file and a chunk of shared memory. The unit

of execution is called a warp (or wavefront). A warp is a

collection of threads executed in lock-step on a SIMD unit.

Shared memory is shared among the warps executing on a

core. A branch unit takes care of control-flow divergence by

maintaining a SIMT stack to enforce IPDOM based recon-

vergence, as discussed in Section I. GPGPU programming

1https://doi.org/10.5281/zenodo.5784768
2https://github.com/charitha22/cgo22ae-darm-code

1 __global__ static void bitonicSort(int *values) {
2 // copy data from global memory to shared memory
3 __syncthreads();
4 for (unsigned int k = 2; k <= NUM; k *= 2) {
5 for (unsigned int j = k / 2; j > 0; j /= 2) {
6 unsigned int ixj = tid ^ j;
7 if (ixj > tid) {
8 if ((tid & k) == 0) {
9 if (shared[ixj] < shared[tid])

10 swap(shared[tid], shared[ixj]);
11 }
12 else {
13 if (shared[ixj] > shared[tid])
14 swap(shared[tid], shared[ixj]);
15 }
16 }
17 __syncthreads();
18 }
19 } // write data back to global memory
20 }

Fig. 1. Bitonic sort kernel

abstractions like CUDA [8] or HIP [7] gives the illusion of

data parallelism with independent threads. However, during

real execution, a group of program instances (i.e. threads)

are mapped to a warp and executed in lock-step. Therefore

control-flow divergence in SPMD programs is detrimental to

the performance because of the SIMT execution limitations.

B. LLVM SSA Form and GPU Divergence Analysis

LLVM [6] is a general framework for building compilers,

optimizations and code generators. Most of the widely adopted

GPGPU compilers [9], [10] are built on top of the LLVM

infrastructure. LLVM uses a target-independent intermediate

representation, LLVM-IR, that enables implementing portable

compiler optimizations. LLVM-IR uses static single assign-

ment form [11] which requires that every program variable

is assigned once and is defined before being used. SSA form

uses φ nodes to resolve data-flow when branches are present,

selecting which definition should be chosen at a confluence of

different paths. In GPGPU compilers, a key step in identifying

divergent control-flow regions is performing compiler analyses

to identify divergent variables (or branches) [5], [12]. A branch

is divergent if the branching condition evaluates to a non-

uniform value for different threads in a warp. If the branching

condition is divergent, threads in a warp will have to take

different control-flow paths at this point. LLVM’s divergence

analysis tags a branch as divergent, if the branching condition

is either data-dependent or sync-dependent on a divergent

variable (such as thread ID) [12], though more sophisticated

divergence analyses have been proposed [13].

III. MOTIVATING EXAMPLE

Bitonic sort is a kernel used in many parallel sorting

algorithms such as bitonic merge sort and Cederman’s quick-

sort [14], [15]. Figure 1 shows a CUDA implementation of

bitonic sort. This kernel is our running example for describing

DARM’s control-flow melding algorithm.

29

In this kernel, the branch condition at line 8 depends on

the thread ID. Therefore it is divergent. Since the divergent

branch is located inside a loop, the execution of the two sides

of the branch needs to be serialized many times, resulting

in high control-flow divergence. However the code inside the

if (line 9-10) and else (line 13-14) sections of the divergent

branch are similar in two ways. First, both code sections

have the same control-flow structure (i.e. if-then branch).

Second, instructions along the two paths are also similar. Both

conditions compare two elements in the shared array and

perform a swap operation. Therefore the contents of the if and

else sections can be melded to reduce control-flow divergence.

Both code sections consists of shared memory loads and store

operations. In the unmelded version of the code these shared

memory operations will have to be serialized due to thread-

divergence. However, if the two sections are melded threads

can issue the memory instructions in the same cycle resulting

in improved performance.

Existing compiler optimizations such as tail merging and

branch fusion cannot be applied to this case. Tail merging is

applicable only if two basic blocks have a common destination

and have identical instruction sequences at their tails. However

in bitonic sort, the if and then sections of the divergent branch

have multiple basic blocks, and the compiler cannot apply

tail merging. Similarly branch fusion requires diamond shaped

control-flow and does not work if the if and else sections of

the branch contain complex control-flow structures.

DARM solves this problem in two phases. In the analysis

phase (Section IV-C), DARM analyzes the control-flow region

dominated by a divergent branch to find isomorphic sub-

regions that are in the true and false paths of the divergent

branch. These isomorphic sub-region pairs are aligned based

on their melding profitability using a sequence alignment

strategy. Melding profitability is a compile-time approximation

of the percentage of thread cycles that can be saved by melding

two control-flow regions. Next, DARM choses profitable sub-

region pairs in the alignment (using a threshold) and computes

an instruction alignment for corresponding basic blocks in the

two regions. In the code generation phase (Section IV-D),

DARM uses this instruction alignment to meld corresponding

basic blocks in the sub-region pair. This melding is applied

iteratively until no further profitable melding can be per-

formed. DARM’s melding transformation is done in SSA form,

therefore the resulting CFG can be optimized further using

other compiler optimizations (Sections IV-E and IV-F).

IV. DETAILED DESIGN

In this section we describe the algorithm used by DARM

to meld similar control-flow subgraphs. First we define the

following terms used in our algorithm description.

A. Preliminaries and Definitions

Definition 1. Simple Region : A simple region is a subgraph

of a program’s CFG that is connected to the remaining CFG

with only two edges, an entry edge and an exit edge.

Definition 2. Region : A region of the CFG is characterized

by two basic blocks, its entry and exit. All the basic blocks

inside a region are dominated by its entry and post-dominated

by its exit. Region with entry E and exit X is denoted by the

tuple (E,X). LLVM regions are defined similarly [16], [17].

Definition 3. Single Entry Single Exit Subgraph : Single

entry single exit (SESE) subgraph is either a simple region or

a single basic block with a single predecessor and a successor.

Note that a region with entry E and exit X can be transformed

into a simple region by introducing a new entry and exit

blocks Enew, Xnew. All successors of E are moved to Enew

and Enew is made the single successor of E. Similarly, all

predecessors of X are moved to Xnew and a single exit edge

is added from Xnew to X .

Definition 4. Simplified Region : A region with all its sub-

regions transformed into simple regions is called a simplified

region.

We now turn to the steps the DARM compiler pass takes to

reduce control divergent code.

B. Detecting Meldable Divergent Regions

First DARM needs to detect divergent branches in the CFG.

We use LLVM’s built-in divergence analysis to decide if a

branch is divergent or not (Section II). The smallest CFG

region enclosing a divergent branch is called the divergent

region corresponding to this branch. Melding transformation

is applied only to divergent regions of the CFG. The next

step is to decide if a divergent region contains control-flow

subgraphs (definition 3) that can be safely melded.

Definition 5. Meldable Divergent Region: A simplified region

R with entry E and exit X is said to be meldable and divergent

if the following conditions are met,

1) The entry block of R has a divergent branch

2) Let BT and BF be the successor blocks of E. BT does not

post-dominate BF and BF does not post-dominate BT

According to definition 5, a meldable divergent region has a

divergent branch at its entry (condition 1). This makes sure

that our melding transformation is only applied to divergent

regions, and non-divergent parts of the control-flow are left

untouched. Condition 2 ensures that paths BT → X (i.e. true

path) and BF → X (i.e. false path) consists of at least

one SESE subgraph and these subgraphs from the two paths

can potentially be melded to reduce control-flow divergence.

Consider our running example in Figure 1. When this kernel

is compiled with ROCm HIPCC GPU compiler [7] with -O3

optimization level into LLVM-IR, we get the CFG shown in

Figure 4a. Note that the compiler aggressively unrolls both

the loops (lines 4 and 5) in the kernel, and the resulting CFG

consists of multiple repeated segments of the inner loop’s body

(lines 6-17). In Figure 4a, only one unrolled instantiation of

the loop body is shown. As explained in Section III, this kernel

contains a divergent branch, which is at the end of basic block

30

%A %B %A_B

%A

%C
T F

%E

%D

%C
T F

%E

%D

%P
T F

%Q

%R

%C_P
T F

%E_Q

%D_R

 SG-L

SG-M

SG-L SG-M
SG-N

SG-L SG-M
SG-N

%R1

T F

%A

%R2

%C

T F

%E

%D

%R1_C

T F

%A_E

%R2_D

1 3

2
SG-MSG-L’ SG-N

Fig. 2. Examples showing the 3 cases considered by DARM to detect meldable
subgraphs

%B. Also %B’s two successors %C and %D do not post-

dominate each other. Therefore the region (%B,%G) is a

meldable divergent region.

C. Computing Melding Profitability

Definition 5 only allows us to detect regions that may

contain meldable control-flow subgraphs. It does not tell us

whether it is legal to meld them or melding them will improve

performance. First we need to define what conditions needs to

be satisfied for two SESE subgraphs to be meldable.

Definition 6. Meldable SESE Subgraphs: SESE subgraphs

S1 and S2 where S1 belongs to the true path and S2 belongs

to the false path are meldable if any one of the following

conditions are satisfied,

1) Both S1 and S2 have more than one basic block and they

are structurally similar i.e. isomorphic.

2) S1 is a simple region and S2 consists of a single basic

block or vice versa.

3) Both S1 and S2 consists of single basic block.

Definition 6 ensures that any two SESE subgraphs that meets

any one of these conditions can be melded without introducing

additional divergence to the control-flow. Note that we do not

consider subgraphs that contain warp-level intrinsics [18] for

melding because melding such subgraphs can cause deadlock.

Figure 2 shows three examples where each of the above

conditions are applicable. Assume in each example subgraphs

L and M are in a divergent region (E,X) and only one of

the subgraphs are executed from any program path from E
to X . (i.e. any thread in warp that executes E must either go

through L or M but not both).

Region to Region Melding : In case 1©, two SESE subgraphs

L and M are isomorphic, therefore they can be melded to

have the same control-flow structure (subgraph N in Figure 2-

1©). In the melded subgraph N , basic blocks %C_P and

%D_R are guaranteed to post-dominate E and threads can

reconverge at these points resulting in reduction in control-flow

divergence. Also the structural similarity in case 1© ensures

that we do not introduce any additional branches into the

melded subgraph.

Basic Block to Region Melding : In case 2©, basic block

%A (in subgraph L) can potentially be melded with any basic

block in CFG M . Assume that basic blocks %A and %E have

the most melding profitability (melding profitability described

later). First we replicate the control-flow structure of M to

create a new CFG L′. Then we place %A in L′ such that

%A and %E are in similar positions in the the two CFGs

L′ and M . We also ensure the correctness of the program by

concretizing the branch conditions in L′ to always execute %A
and create φ nodes at dominance frontiers of %A to make sure

values defined inside %A are reached to their users [11]. In

this example branch at end of basic block %R1 will always

take the edge %R1−%A (bold arrow in subgraph L′) and φ
nodes will be added to %R2. Now subgraphs L′ and M are

isomorphic and therefore can be melded similar to case 1©.

We refer to this process as Region Replication. Main benefit

of region replication is that it allows us to meld %A with any

profitable basic block in subgraph M and resultant subgraph

N has less divergence because threads can reconverge at basic

blocks %R1_C and %R2_D in melded subgraph N .

Basic Block to Basic Block Melding : Case 3© is the simplest

form where two SESE basic blocks are melded.

A meldable divergent region can potentially have multiple

SESE subgraphs in its true and false paths. Therefore we need

a strategy to figure out which subgraph pairs to meld. We

formulate this as a sequence alignment problem as follows.

First, we obtain a ordered sequence of subgraphs in true path

and false of the divergent region. Subgraphs are ordered using

the post-dominance relation of their entry and exit blocks. For

example, if entry node of subgraph S2 post-dominates exit

node of subgraph S1, then S2 comes after S1 in the order

and denoted as S1 ≺ S2. A subgraph alignment is defined as

follows,

Definition 7. Subgraph Alignment: Assume a divergent re-

gion (E,X) has ordered SESE subgraphs {ST
1
, ST

2
, . . . , ST

m}
in its true path and ordered subgraphs {SF

1
, SF

2
, . . . , SF

n } in

the false path. A subgraph alignment is an ordered sequence

of tuples A = {(ST
i0, S

F
j0), (S

T
i1, S

F
j1), . . . , (S

T
ik, S

F
jk)} where,

1) if (ST
p , S

F
q) ∈ A then ST

p and SF
q are meldable subgraphs

2) if (ST
p1, S

F
q1) ≺ (ST

p2, S
F
q2) then ST

p1 ≺ ST
p2 and ST

q1 ≺ ST
q2

According to definition 7, only meldable subgraphs are al-

lowed in a alignment tuple and if the aligned subgraphs

are melded, the resultant control-flow graph does not break

the original dominance and post-dominance relations of the

subgraphs.

Given a suitable alignment scoring function F and gap
penalty function W , we can find an optimal subgraph align-
ment using a sequence alignment method such as Smith-
Waterman [19] algorithm. The scoring function F measures
the profitability of melding two meldable subgraphs S1 and
S2. Prior techniques have employed instruction frequency to
approximate the profit of merging two functions [20], [21]. We
use a similar method to define subgraph melding profitability.
First we define the melding profitability of two basic blocks

31

b1 and b2 as follows,

MPB(b1, b2) =

∑
i∈Q

min(freq(i, b1), freq(i, b2))× wi

lat(b1) + lat(b2)

Here Q is set of all possible instruction types available in

the instruction set (i.e. LLVM-IR opcodes). lat(b) is the static

latency of basic block which can be calculated by summing the

latencies of all instructions in b. wi is the latency of instruction

type i. The idea here is to approximate the percentage of

instruction cycles that can be saved by melding the instructions

in b1 and b2 assuming a best-case scenario (i.e. all common

instructions in b1 and b2 are melded regardless of their order).

For example, two basic blocks with identical opcode frequency

profile will have a profitability value 0.5.
Because meldable subgraphs are isomorphic, there is

a one-to-one mapping between basic blocks (i.e. corre-
sponding basic blocks). For example, in Figure 2 case
1© the basic block mapping for CFGs L and M are
{(%C,%P), (%E,%Q), (%D,%R)}. Assume the mapping
of basic blocks in S1 and S2 is denoted by O. Subgraph
melding profitability MPS of subgraphs S1 and S2 is defined
in terms of melding profitabilities of their corresponding basic
blocks.

MPS(S1, S2) =

∑
(b1,b2)∈O

MPB(b1, b2)× (lat(b1) + lat(b2))
∑

(b1,b2)∈O
lat(b1) + lat(b2)

Similar to MPB , MPS measures the percentage of instruc-

tion cycles saved by melding two SESE subgraphs. This metric

is an over-approximation, however it provides a fast way of

measure the melding profitability of two subgraphs that works

well in practice. We use MPS as the scoring function for

subgraph alignment.

Instruction Alignment: Notice that our subgraph melding

profitability metric (i.e. MPS) prioritizes subgraph pairs that

have many similar instructions in their corresponding basic

blocks. Therefore when melding two corresponding basic

blocks we must ensure that maximum number of similar

instructions are melded together. This requires computing

an alignment of two instruction sequences such that if they

are melded using this alignment, the number of instruction

cycles saved will be maximal. We use the approach used in

Branch Fusion [5] to compute an optimal alignment for two

instructions sequences. In this approach compatible instruc-

tions are aligned together and instructions with higher latency

are prioritized to be aligned over lower latency instructions.

Compatibility of two instructions for melding depends on a

number of conditions like having the same opcode and types of

the operands being compatible. We used the criteria described

by Rocha et al. [21] to determine this compatibility. This

instruction alignment model uses a gap penalty for unaligned

instructions because extra branches needs to be generated

to conditionally execute these unaligned instructions. Our

melding algorithm does not depend on the sequence alignment

algorithm used for instruction alignment computation. We use

Smith-Waterman algorithm [19] to compute the instruction

alignment because prior work [5] has shown its effectiveness.

Figure 3a shows the instruction alignment computed for two

basic blocks A and B. Aligned instructions are shown in green

and instructions aligned with a gap are in red.

D. DARM Code Generation

Algorithm 1: DARM Algorithm

Input: SPMD function F
Output: Melded SPMD function Fout

do
changed ← false

for BB in F do
R, C ← GetRegionFor(BB)

if IsMeldableDivergent(R) then
SimplifyRegion(R)

A ← ComputeSubgraphAlignment(R)

for (ST , SF , profit) in A do

if profit ≥ threshold then
Meld(ST , SF , C)

changed ← true
end

end

end

if changed then
SimplifyFunction(F)

RecomputeControlFlowAnalyses(F)

break
end

end

while changed;

Algorithm 2: SESE Subgraph melding Algorithm

Input: SESE subgraphs ST ,SF , Condition C

Output: Melded SESE subgraph Sout

List blockPairs ← Linearize(ST , SF)

List A ← empty

for (BT , BF) in blockPairs do
List instrPairs ← ComputeInstrAlignment(BT , BF)

A.append(instrPairs)
end

PreProcess(ST , SF)

Map operandMap ← empty

for P in A do
Imelded ← Clone(P)

Update(operandMap, Imelded, P)
end

for P in A do
SetOperands(P , operandMap, C)

end

RunUnpredication()

RunPostOptimizations()

DARM’s control-flow melding procedure is shown in algo-

rithm 1. This algorithm takes in a SPMD function F and

iterates over all basic blocks in F to check if the basic block

is an entry to a meldable divergent region (R) according to

32

%sel7 = select i1 %cmp, i32 %12, i32 %9
%14 = and i32 %sel7, %7

%sel3 = select i1 %cmp, i32 %3, i32 %5
%7 = sub nsw i32 %2, %sel3

%sel1 = select i1 %cmp, i32 %0, i32 %4
%sel2 = select i1 %cmp, i32 %1, i32 %5
%6 = add nsw i32 %sel1, %sel2

%add = add nsw i32 %0, %1

%sub = sub nsw i32 %2, %3

%div = sdiv i32 %2, 5

%shr = ashr i32 %3, 2

%shl = shl i32 %add, 2

%add1 = add nsw i32 %4, %5

%sub2 = sub nsw i32 %2, %5

%or = or i32 %sub2, %4

%xor = xor i32 %4, %5

%div3 = sdiv i32 %or, 4

%mul = mul nsw i32 %4, %5

%and = and i32 %shl, %sub

%mul4 = mul nsw i32 %xor, %sub2

%and5 = and i32 %xor, %sub2

A B

a

b

c

a

b

c

(a)

%sel7 = select i1 %cmp, i32 %12, i32 %9
%14 = and i32 %sel7, %7

%sel3 = select i1 %cmp, i32 %3, i32 %5
%7 = sub nsw i32 %2, %sel3

%sel1 = select i1 %cmp, i32 %0, i32 %4
%sel2 = select i1 %cmp, i32 %1, i32 %5
%6 = add nsw i32 %sel1, %sel2

%add = add nsw i32 %0, %1

%sub = sub nsw i32 %2, %3

%div = sdiv i32 %2, 5

%shr = ashr i32 %3, 2

%shl = shl i32 %add, 2

%add1 = add nsw i32 %4, %5

%sub2 = sub nsw i32 %2, %5

%or = or i32 %sub2, %4

%xor = xor i32 %4, %5

%div3 = sdiv i32 %or, 4

%mul = mul nsw i32 %4, %5

%and = and i32 %shl, %sub

%mul4 = mul nsw i32 %xor, %sub2

%and5 = and i32 %xor, %sub2

A B

a

b

c

a

b

c

(b)

%M.tail:
 %10 = phi i32 [%8, %M.split], [undef, %M]
 %11 = phi i32 [%9, %M.split], [undef, %M]
 // instructions

%M:
// instructions
br i1 %cmp, label %M.tail, label %M.split

%M.split:
 %8 = or i32 %7, %4
 %9 = xor i32 %4, %5
 br label %M.tail

T F

(c)

Fig. 3. (a) Instruction alignment result for two basic blocks A and B, (b) Code generated by DARM for aligned instructions a©, b© and c© in Figure 3a, (c)
Unpredication applied to the unaligned instructions of basic block B in figure 3a

the conditions in Definition 5. We use Simplify to convert all

subregions inside R in to simple regions.

We compute the optimal subgraph alignment for the two

sequences of subgraphs in the true and false paths of R.

We meld each subgraph pair in the alignment if the melding

profitability is greater than some threshold. Subgraph melding

changes the control-flow of F . Therefore we first simplify the

control-flow (using LLVM’s simplifycfg) and then recompute

the control-flow analyses (e.g. dominator, post-dominator and

region tree) required for the melding pass. We apply the

melding procedure on F again until no profitable melds can

be performed.

Algorithm 2 shows the procedure for melding two

subgraphs ST and SF . C is the branching condition of the

meldable divergent region containing ST and SF . First the

two subgraphs are linearized in pre-order to form a list of

corresponding basic block pairs. Processing the basic blocks

in pre-order ensures that dominating definitions are melded

before their uses. For each basic block pair in this list we

compute an optimal alignment of instructions. Each pair

in the alignment falls into two categories, I-I and I-G. I-I

is a proper alignment with two instructions and I-G is an

instruction aligned with a gap. Our alignment makes sure that

in a match the two instructions are always meldable into one

instruction (e.g. a load is not allowed to align with a store).

First we traverse the alignment pair list and clone the aligned

instructions. For I-I pairs, we clone a single instruction

because they can be melded. During cloning, we also update

the operandMap, which maintains a mapping between

aligned and melded LLVM values. We perform a second pass

over the instruction alignment to set the operands of cloned

instructions (SetOperands). Assume we are processing an

I-I pair with instructions IT , IF and cloned instruction is

Imelded. For each operand of Imelded, the corresponding

operands from IT and IF are looked up in operandMap
because an operand might be an already melded instruction.

If the resultant two operands from IT and IF are the same,

we just use that value as the operand. If they are different,

we generate a select instruction to pick the correct operand

conditioned by C. For an I-G pair, operands are first looked

up in operandMap and the result is copied to Imelded.

Consider the instruction alignment in figure 3a. Figure 3b

shows the generated code for aligned instruction pairs a©,

b© and c©. In case a©, two select instructions are needed

because both operands maps to different values (%0, %4
and %1, %5). In case b©, the first operand is the same (%2)

for both instructions, therefore only one select is needed.

In case c©, both first and second operands are different for

the two instructions. However the second operands map to

same melded instruction %7, so only one select is needed.

Note that %cmp is the branching condition for the divergent

region, and we use that for selecting the operands.

Melding Branch Instructions of Exit Blocks: Setting

operands for branch instructions in subgraph exit blocks is

slightly different than that for other instructions. Let BE
T ,BE

F

be the exit blocks of ST and SF . Successors BE
T ,BE

F can

contain φ nodes. Therefore we need to ensure that successors

of BE
T and BE

F can distinguish values produced in true path

or false path. To solve this we move the branch conditions of

BE
T and BE

F in to newly created blocks B
′

T and B
′

F . Now we

can conditionally branch to B
′

T and B
′

F depending on C. For

example, in Figure 4c basic blocks %M and %N are created

when when melding the exit branches of %X1 and %X2 in

figure 4b. Any φ node in %G (figure 4c) can distinguish the

values produced in true or false path using %M and %N .

Melding φ Nodes : In LLVM SSA form φ nodes are always

placed at the beginning of a basic block. Even if the instruction

alignment result contains two aligned φ nodes we can not meld

them into a single φ node because select instructions can not

be inserted before them. Therefore we copy all φ nodes into

the melded basic block and set the operands for them using

the operandMap. This can introduce redundant φ nodes which

we remove during post-processing.

E. Unpredication

In our code generation process, unaligned instructions are

inserted to the same melded basic block regardless of whether

they are from true or false paths (i.e. fully predicated).

This can introduce overhead due to several reasons. If the

branching conditions C is biased towards the true or false

path, it can result in redundant instruction execution. Also

full predication of unaligned store instructions require adding

extra loads to makes sure correct value is written back to

33

%A
T F

%D
T F

%C
T F

%B
T F

%G
T F

%E %F

%A
T F

%D
T F

%C
T F

%B
T F

%G
T F

%E %F

%X1 %X2

%A
T F

%C_D
T F

%G
T F

%E_F

%X1_X2

%B

%M %N

%A
T F

%G
T F

%E_F

%X1_X2

%B

%M

%C_D
T F

%C_D.T.2
T F

%C_D.T.1
T F

%P.S.1

%N

%P.S.2

(a)

%A
T F

%D
T F

%C
T F

%B
T F

%G
T F

%E %F

%A
T F

%D
T F

%C
T F

%B
T F

%G
T F

%E %F

%X1 %X2

%A
T F

%C_D
T F

%G
T F

%E_F

%X1_X2

%B

%M %N

%A
T F

%G
T F

%E_F

%X1_X2

%B

%M

%C_D
T F

%C_D.T.2
T F

%C_D.T.1
T F

%P.S.1

%N

%P.S.2

(b)

%A
T F

%D
T F

%C
T F

%B
T F

%G
T F

%E %F

%A
T F

%D
T F

%C
T F

%B
T F

%G
T F

%E %F

%X1 %X2

%A
T F

%C_D
T F

%G
T F

%E_F

%X1_X2

%B

%M %N

%A
T F

%G
T F

%E_F

%X1_X2

%B

%M

%C_D
T F

%C_D.T.2
T F

%C_D.T.1
T F

%P.S.1

%N

%P.S.2

(c)

%A
T F

%G
T F

%E_F

%X1_X2

%B

%M %N

%C_D
T F

%C_D.T.2
T F

%C_D.T.1
T F

%P.S.1

%P.S.2

%C_D’

(d)

%A
T F

%M.1
T F

%M.3
T F

%M.2

(e)

Fig. 4. DARM melding algorithm applied to bitonic sort (Figure 1) (a) Original control-flow graph, (b) Region simplification, (c) DARM subgraph melding,
(d) Unpredication, (e) Final optimized control-flow graph

the memory. Unpredication splits the melded basic blocks

at gap boundaries and moves the unaligned instructions into

new blocks. Figure 3c shows unpredication applied to the

unaligned instructions of basic block B in Figure 3a. The

original basic block is split to two parts (%M and %M.tail)
and unaligned instructions (%8 and %9) are moved to a new

basic block, %M.split. φ nodes ((%10 and %11)) are added

to %M.tail to ensure unaligned instructions dominate their

uses. %8 and %9 are never executed in the true path, therefore

φ nodes’ incoming values from block %M are undefined

(LLVM undef). Note that in region replication (Section IV-C)

we apply unpredication only to the melded basic blocks. Store

instructions outside the melded blocks are fully predicated by

inserting extra loads.

F. Pre and Post Processing Steps

Fig. 5. DARM pre-processing example

In SSA form, any definition must dominate all its users.

However DARM’s subgraph melding can break this property.

Consider the two meldable subgraphs ST , SF in figure 5

A©. Definition %a dominates its use %x before the melding.

However if ST and SF are melded naively then %a will no

longer dominate %x. To fix this we add a new basic block

%P with a φ node %m. All uses of %a are replaced with

%m (Figure 5 B©). Notice that value %m is never meant to

be used in the true path execution. Therefore it is undefined

in true path (undef). We apply this preprocessing step before

the melding (PreProcess in Algorithm 2).

Subgraph melding can introduce branches with identical

successors, φ nodes with identical operands and redundant φ
nodes. RunPostOptimizations in Algorithm 2 removes these

redundancies.

G. Putting All Together

Figure 4 shows how each stage of the pipeline of subgraph-

melding transforms the CFG of bitonicSort kernel. The orig-

inal CFG is shown in Figure 4a. Region (%B, %G) is a

meldable divergent region. Figure 4b shows the CFG after re-

gion simplification. Subgraphs (%C,%X1) and (%D,%X2)
are profitable to meld according to our analysis. Figure 4c

shows the CFG after subgraph-melding. The result after ap-

plying unpredication is shown in Figure 4d. Notice that the

unpredication splits the basic block %C_D (in Figure 4c)

into 5 basic blocks (zoomed in blue-dashed blocks in Fig-

ure 4d). Basic blocks %P.S.1 and %P.S.2 are the unaligned

groups of instructions and they are executed conditionally.

Figure 4e shows the final optimized CFG after applying post

optimizations. Note that ROCm HIPCC compiler applied if-

conversion aggressively. Therefore the effect of unpredication

step is nullified in this case.

Figure 4 only shows how DARM transformation changes

the CFG of our running example. It does not show how

the instructions inside these transformed basic blocks are

generated. We use Figure 6 to explain the generation of melded

instructions for the running example. Figure 6a shows the

LLVM-IR of the meldable divergent region ((%B,%G) in

Figure 4b) in our running example. During DARM code genera-

tion, basic blocks in subgraphs (%C,%X1) and (%D,%X2)
are linearized to compute the instruction alignment. Notice

that [%C,%D], [%E,%F], [%X1,%X2] are the correspond-

ing basic block pairs. In this example all instructions perfectly

align with each other except for the compare instructions

(%34 and %31) in basic blocks %D and %C. These compare

instructions can not be aligned because their comparison kind

is different (greater than vs less than). Figure 6b shows the

LLVM-IR after applying subgraph melding and unpredication

(similar to Figure 4d). Note that because instructions %34
and %31 are unaligned, unpredication step introduced basic

blocks %P.S.1 and %P.S.2 to execute them conditionally

based on the divergent condition %16. Extra φ instructions

%phi.1 and %phi.2 are inserted to ensure def-use chains

are not broken during the unpredication step. Out of the all

aligned instructions only the branch instructions at the end of

basic blocks %C and %D require select instructions during

instruction-melding. For example the store instructions in basic

34

%B :
.....

br %16, label %C, label %D

 %C :
 %31 = icmp slt %28, %29
 br %31, label %E, label %X1

 %D :
 %34 = icmp sgt %28, %29
 br %34, label %F, label %X2

 %E :
 store %28, %9
 store %29, %27
 br label %X1

 %F :
 store %28, %9
 store %29, %27
 br label %X2

 %X1 :
 br label %G

%X2 :
br label %G

%G :

(a)

%B :

 br label %C_D

%P.S.1 :
 %34 = icmp sgt %28, %29
 br label %C_D.T.1

%N :
 br label %G

 %C_D :
 br %16, label %C_D.T1, label %P.S.1

T F

 %X1_X2 :
 br %16, label %M, label %N

T F

 %G :

T F

%P.S.2 :
 %31 = icmp slt %28, %29
 br label %C_D.T.2

%E_F :
 store %28, %9
 store %29, %27
 br label %X1_X2

%M :
 br label %G

 %C_D.T.1 :
 %phi.1 = phi [undef, %C_D], [%34, %P.S.1]
 br %16, label %P.S.2, label %C_D.T.2

T F

%C_D.T.2 :
 %phi.2 = phi [%31, %P.S.2], [undef, %C_D.T.1]
 %37 = select %16, %phi.2, %phi.1
 br %37, label %E_F, label %X1_X2

T F

(b)

Fig. 6. LLVM-IR before and after applying DARM transformation to our
running example (a) meldable divergent region (b) instruction alignment (b)
LLVM-IR generated after subgraph melding and unpredication

blocks %E, %F use matching operands, therefore can be

melded without adding selects. On the other hand, conditional

branch instructions uses values %34 and %31 and select

instruction %37 is inserted (Figure 6b) to pick the branching

condition conditionally. Note that the values %34 and $31
will flow to their users via the φ nodes %phi.1 and %phi.2
respectively. Therefore the select instruction (i.e. %37) uses

these φ nodes as its operands.

V. IMPLEMENTATION

We implemented the DARM algorithm described in Sec-

tion IV as an LLVM-IR analysis and transformation pass

on top of the ROCM HIPCC3 GPU compiler [10]. Both the

analysis and transformation are function passes that operate

3LLVM version 12.0.0, ROCm version 4.2.0

on GPGPU functions. The analysis pass first detects meld-

able divergent regions using LLVM’s divergence analysis.

Then it finds all the profitable subgraph pairs that can be

melded. We use a default melding profitability threshold of

0.2 (algorithm 1). We also provide a sensitivity analysis on

this threshold in Section VI-E. We use modified version of

LLVM cost model [22] to obtain instruction latencies for

melding profitability and instruction alignment computations.

The transformation uses the output of analysis to perform

DARM’s code generation procedure (Section IV-D). The trans-

formation pass also performs the unpredication, pre- and post-

processing steps described in Sections IV-E and IV-F. LLVM

pass is implemented in ∼ 2500 lines of C++ code. In order

to produce the program binary with our pass, we had to

include our pass in the ROCM HIPCC compilation pipeline.

Most GPGPU compilers (e.g. CUDA nvcc, ROCm HIPCC)

use separate compilation for GPU device and CPU host codes.

Final executable contains the device binary embedded in the

host binary. In the modified workflow, we first compile the

device code into LLVM-IR and run DARM on top of that

to produce a transformed IR module. Our pass runs only on

device functions and avoids any modifications to host code.

After that, we use the LLVM static compiler (llc) [23] to

generate an object file for the transformed device code. The

rest of the compilation flow is as same as the one without any

modification.

VI. EVALUATION

A. Evaluation Setup and Benchmarks

We evaluate the performance of DARM on a machine with

a AMD Radeon Pro Vega 20 GPU. This GPU has 16 GBs

of global memory, 64 kB of shared memory (i.e. Local Data

Share (LDS)) and 1700 MHz of max clock frequency. The

machine consists of AMD Ryzen Threadripper 3990X 64-Core

Processor with 2900 MHz max clock frequency.

We use two different sets of benchmarks. First, to assess the

generality of DARM, we create several synthetic programs that

exhibit control divergence of varying complexity. While many

real-world programs are hand-optimized to eliminate diver-

gence, these synthetic programs qualitatively demonstrate the

generality of DARM over prior automated divergence-reduction

techniques, and show that DARM can automate the control-flow

melding that would be otherwise done by hand. For detailed

description of the evaluation on synthetic benchmarks, please

refer the extended version of our paper [24].

Real-world Benchmarks We show DARM’s effectiveness on

real-world programs. We consider 7 benchmarks written in

HIP [7]. These benchmarks were taken from well-known

highly hand-optimized GPU benchmark suites or optimized

reference implementations of papers. We selected these bench-

marks because they contain divergent if-then-else regions that

present melding opportunities for DARM. We do not consider

benchmarks that do not present any melding opportunities for

DARM because they are not modified by DARM in any way.

Bitonic Sort (BIT) Our running example is bitonic

sort [14]. In this kernel, each thread block takes in a bucket

35

BIT
32

BIT
64

BIT
128

BIT
256

PCM
32

PCM
64

PCM
128

PCM
256 MS

32
MS

64
MS

128
MS

256 LUD
16

LUD
32

LUD
64

LUD
128

NQ
U64

NQ
U96

NQ
U12

8
NQ

U25
6

SRA
D16

x16

SRA
D32

x32
DC

T4x
4
DC

T8x
8

DC
T16

x16 GM
GM

-Be
st

0.0

0.5

1.0

1.5
Sp

ee
du

p
+ +

+ + +

+ +
1.15 1.16

DARM BF

Fig. 7. Real-world Benchmark Performance. + marks block size with best baseline runtime. GM is geo-mean of DARM’s speedup on all benchmarks; GM-Best
is DARM’s speedup on + configurations.

and performs parallel sort. We used an input of 226 elements

and varied the bucket (i.e. block) size.

Partition and Concurrent Merge (PCM) PCM is a parallel

sorting algorithm based on Batcher’s odd-even merge sort [25].

PCM performs odd-even merging of buckets of sorted elements

at every position of the array leading to loops with nested data-

dependent branches. We used an array of 228 elements with

different number of buckets.

Mergesort (MS) A parallel bottom-up merge sort imple-

mentation. The kernel has data-dependent control-flow diver-

gence in the merging step. We used an input array with 220

elements.

LU-Decomposition (LUD) LUD implementation from the

Rodinia benchmark suite [26]. We focus our evaluation on

the lud_perimeter kernel in this benchmark. lud_perimeter

contains multiple divergent branches that depend on thread

ID and block size. We use a randomly generated matrix of

size 16384× 16384 as the input.

N-Queens (NQU) N-Queens solver uses backtracking to

find all different ways of placing N queens on a NxN chess-

board without attacking each other. We have used the kernel

from the GPGPU-sim benchmark suite [27] with N is 15.

Speckle Reducing Anisotropic Diffusion (SRAD) SRAD

is diffusion based noise removal method for imaging applica-

tions from Rodinia benchmark suite [26]. We have used an

image of size 4096× 4906 as input.

DCT Quantization (DCT) An in-place quantization of a

discrete cosine transformation (DCT) plane [28]. The quan-

tization process is different for positive and negative values

resulting in data-dependent divergence. We use a randomly

generated DCT plane of size 215 × 215 as input.

Baseline and Branch Fusion Our baseline implementations

of these kernels have been hand-optimized (except, obviously,

for optimizations that manually remove control divergence

by applying DARM-like transformations). This optimization

includes using shared memory when needed to improve per-

formance. The baseline implementations were compiled with

-O3. Branch fusion [5] was implemented in the Ocelot [29]

open-source CUDA compiler that is no longer maintained

and does not support AMD GPUs. We implemented branch

fusion by modifying DARM to apply melding for diamond-

shaped control-flow (if-then-else). We use this for comparison

against branch fusion. Branch fusion cannot fully handle the

control-flow of BIT, PCM, and NQU. Loop unrolling enables

successful branch fusion in LUD.

Block Size Each of these kernels has a tunable block size—

essentially, a tile size that controls the granularity of work

in the inner loops. Because the correct block size can be

dependent on many parameters (though for a given input and

GPU configuration, one is likely the best), our evaluation treats

block size as exogenous to the evaluation, and hence considers

behavior at different block sizes for each kernel. In other

words, our evaluation asks: if a programmer has a kernel with

a given block size, what will happen if DARM is applied?

Note that of these kernels, only LUD exhibit divergence

that depends on block size. This means that all the other

benchmarks will experience divergence regardless of block

size. LUD’s divergence, on the other hand, is block size

dependent. For some block sizes, the kernel will be divergent,

while for others, it will be convergent.

B. Performance

Figure 7 shows the speedups for real benchmarks DARM

always improves the performance (1.15× geo-mean speedup

over all benchmarks and 1.16× geo-mean speedup over the

best baseline variants) except for SRAD (see below). The

highest relative improvement in performance can be seen

in BIT and PCM for all block sizes. This is because both

these benchmarks are divergent regardless of the block size

and they have complex control-flow regions with shared

memory instructions. DARM successfully melds these regions

and reduces divergence significantly. Branch fusion improves

performance in PCM by melding if-then-else blocks. In LUD,

the divergence is block size dependent, and the kernel is

divergent only at block sizes 16, 32 and 64, where we see

a visible performance improvement introduced by DARM.

NQU contains a time-consuming loop with divergent if-then-

elseif-then section. DARM applies region replication to remove

divergence, achieving superior performance. SRAD kernel

has both block size-dependent and data-dependent divergent

regions (say RB and RD respectively). Both RB and RD

consists of if-then-else–if-then-else chains. RB contains no

shared memory instructions and melding does not improve

performance (for both DARM and branch fusion). However

RD contains a 3-way divergent branch with shared memory

instructions and the divergence is biased i.e. execution only

takes 2 of the 3 ways. In this case branch fusion has better

36

performance at block size 16, because blocks that get melded

happen to be on the divergent paths. However DARM has

more melding options than branch fusion, and it melds all

3 paths adding extra overhead. At block size 32, the extra

overhead introduced by melding RB becomes significant and

both DARM and branch fusion exhibit a performance drop.

Performance drop for DARM can be avoided by prioritizing

the melding order (i.e. apply melding to divergent regions with

most profitable subgraphs first). However, prioritizing melding

order is not considered in this paper.

In most cases (except SRAD), the block size for best

performing baseline is also the one that gives the best absolute

performance for DARM. Interestingly, for 4/7 benchmarks

(BIT, PCM, MS, and DCT), not only does this best baseline

block size produce the best absolute DARM performance, it

also produces the best speedup relative to the baseline: the

block size that makes the baseline perform the best, actually

exposes more optimization opportunities to DARM.

We use rocprof [30] to collect ALU utilization and memory

instruction counters to reason about performance. We focus on

the block sizes for each benchmark where DARM has highest

improvement over the baseline.

C. ALU Utilization

DARM’s melding transformation enables the ALU instruc-

tions in divergent paths to be issued in the same cycle. This

effectively improves the SIMD resource utilization. Figure 8

shows the ALU utilization (%). As expected DARM improves

the ALU utilization significantly for most benchmarks. In BIT,

divergent paths does not have common comparison operators

(> and < comparisons in lines 9 and 13 in Figure 1). Even

though DARM unpredicates these instructions, later optimiza-

tion passes decide to fully-predicate them resulting in lower

ALU utilization.

D. Melding of Memory Instructions

Figure 9 shows the normalized number of global and shared

memory (i.e. local data share) instructions issued after apply-

BIT PCM MS LUD NQU SRAD DCT
0

20

40

60

80

100

AL
U U

tili
za

tio
n (

%)

O3 DARM BF

Fig. 8. ALU Utilization.

BIT PCM MS LUD NQU SRAD DCT
0.0

0.5

1.0

1.5

No
rm

ali
ze

d C
ou

nte
rs

Vector Mem RD+RW (DARM)
Vector Mem RD+RW (BF)
Shared Mem (DARM)
Shared Mem (BF)

Fig. 9. Normalized Memory Instruction Counters.

BIT PCM MS LUD NQU SRAD DCT
0.0

0.5

1.0

1.5

Sp
ee

du
p

0.1 0.2 0.3 0.4 0.5

Fig. 10. Variation of melding profitability thresholds.

ing DARM. In LUD, there are many common shared memory

instructions in divergent paths. However these instructions do

not have different memory alignments, therefore cannot be

melded into a single instruction. Unpredicated shared memory

instructions are predicted by other optimization passes in

LLVM resulting in higher instruction count. Melding reduces

the global memory instruction count in LUD. DCT does not

have any memory instructions in the divergent region and does

not use shared memory. In BIT and PCM, the melded regions

contain a lot of shared memory instructions. Therefore the

reduction in shared memory instructions is significant and

correlate with the performance gain. We find that melding

shared memory instructions is more beneficial than melding

ALU instructions because shared memory instructions have

higher latency than most ALU instructions, though lower

latency than global memory instructions. Therefore there is

2× improvement in cycles spent if two divergent shared

memory instructions are issued in the same cycle. In contrast,

melding global memory instructions does not always improve

performance. This is because the data requested by divergent

memory instructions might be on different cache lines and

these requests are serialized by the memory controller even if

they are issued in the same cycle.

E. Melding Profitability Threshold

Figure 10 shows the performance of DARM for different

melding profitability thresholds on the real-world benchmarks

considering DARM’s best performing block sizes. For all

benchmarks, we observe that DARM’s speedup reduces as

we increase the threshold due to lost opportunities.When we

reduce the threshold, increment in the improvement of the

performance of DARM becomes insignificant (after 0.2). But

we cannot reduce it to zero because every possible pair would

be melded and the subsequent CFG simplification passes

would unpredicate them. As a result, DARM may become non-

convergent.

F. Compile Time
TABLE II

AVERAGE COMPILE TIME (S)

Benchmark O3 DARM Normalized

BIT 0.4804 0.5018 1.0444
PCM 0.5690 0.5942 1.0443
MS 0.8037 0.8064 1.0035
LUD 0.5993 0.6294 1.0502
NQU 0.4687 0.4738 1.0109
SRAD 0.4999 0.5121 1.0244
DCT 0.4398 0.4439 1.0093

Table II shows the device code compilation times for the

baseline and DARM. We omit the time for compiling host

37

code and linking because it is constant for both the baseline

and DARM. Since we perform the analysis and the instruction

alignment – the most costly parts – at the basic block level

rather than performing at a higher level (i.e. function or region

level), we incur negligible compilation overhead. Compilation

time overhead introduced by DARM is a small fraction of total

compilation time (including host code) for all cases.

DARM’s compile time depends on the size of basic blocks

that get melded and the structure of the program since it

determines different types of melding opportunities. A slight

overhead in compilation time of LUD is caused by sequence

alignment overhead on large basic blocks (created by loop

unrolling). PCM and BIT have divergent regions inside an

unrolled loop, therefore DARM’s meldable subgraph detection

incurs overhead. Only BIT and PCM has opportunities for

region to region melding, and only PCM, NQU, and SRAD

have opportunities for basic block to region melding. Presence

of basic block to region melding opportunity results in region

replication.

VII. RELATED WORK

Impact of control-flow divergence has extensively studied

in different contexts [31]–[34]. Reducing control-flow diver-

gence requires finding the source of divergence in a program.

Coutinho et al. constructed a divergence analysis to statically

identify variables with the same value for every SIMD unit and

used this analysis to drive Branch Fusion [5]. A divergence

analysis of similar fashion based on data and sync dependences

has been integrated to the LLVM framework [12]. Recently,

Rosemann et al. has presented a precise divergence analysis

based on abstract interpretation for reducible CFGs [13]. Using

a precise divergence analysis improves the opportunities of

melding for DARM.

Tail Merging is a standard, but restrictive, compiler op-

timization used to reduce the code size by merging identi-

cal sequences of instructions. Chen et al. used generalized

tail merging to compact matching Single-Entry-Multiple-Exit

regions [4]. Recently, Rocha et al. has presented Function

Merging, an advanced sequence-alignment based technique for

code size reduction [20], [21]. Even though parts of DARM has

some similarities with function merging, it does not tackle

divergence.

In addition to branch fusion, Anantpur and Govindarajan

proposed to structure the unstructured CFGs and then linearize

it with predication [35]. More recently, Fukuhara and Takimoto

proposed Speculative Sparse Code Motion to reduce diver-

gence in GPU programs [36], which preserves the CFG and

it is orthogonal to DARM. Collaborative Context Collection

copies registers of divergent warps to shared memory and

restores them when those warps become non-divergent [37].

Iteration Delaying is a complementary compiler optimization

to DARM that delays divergent loop iterations [38] and can

be applied following DARM. Recently, Damani et al. has

presented a speculative reconvergence technique for GPUs

similar to iteration delaying [39]. Common Subexpression

Convergence (CSC) [40] works similar to branch fusion but

uses branch flattening (i.e. predication) to handle complex

control-flow. In contrast, DARM does not require predication

to meld complex control-flow, thus more general than CSC.

Architectural techniques such as Thread Block Com-

paction [41] and Dynamic Warp Formation [1] involve repack-

ing threads into non-divergent warps. Variable Warp Siz-

ing [42] and Dynamic Warp Subdivision [43] depend on

smaller warps to schedule divergent thread groups in parallel.

Independent Thread Scheduling helps to hide the latency

in divergent paths by allowing to switch between divergent

threads inside a warp [3], [44].

VIII. DISCUSSION AND FUTURE WORK

Most of the GPGPU benchmarks are heavily hand optimized

by expert developers and this often include DARM like trans-

formations to remove control-flow divergence [5]. We evaluate

DARM on limited set of real-world benchmarks mainly because

of this reason. However we also emphasize that doing DARM-

like transformations by hand is time-consuming and error-

prone. For example, it took us several hours to manually apply

control-flow melding to LUD kernel. Therefore, offloading this

to the compiler can save a lot of developer effort.

The benefits of DARM is not limited to reducing control-

flow divergence in GPGPU programs. DARM can be used to

reduce control-flow divergence in any hardware backends and

programming models that employ SIMT execution (e.g. in-

tel/AMD processors with ISPC [45]). DARM can be used to

reduce branches in a program. This property can be exploited

to accelerate software testing techniques such as symbolic

execution [46]. DARM factor out common code segments

within if-the-else regions of a program. Therefore it can be

used as an intra-function code size reduction optimization as

well. Aforementioned applications of DARM suggest that it is

useful as a general compiler optimization technique. We plan

to explore some of these applications in our future work.

IX. CONCLUSION

Divergent control-flow in GPGPU programs causes perfor-

mance degradation due to serialization. We presented DARM,

a new compiler analysis and transformation framework for

GPGPU programs implemented on LLVM, that can detect and

meld similar control-flow regions in divergent paths to reduce

divergence in control-flow. DARM generalizes and subsumes

prior efforts at reducing divergence such as tail merging and

branch fusion. We showed that DARM improves performance

by improving ALU utilization and promoting coalesced shared

memory accesses across several real-world benchmarks.

ACKNOWLEDGMENTS

This work was supported in part by National Science Foun-

dation awards CCF-1919197 and CCF-1908504. We would

like to thank Tim Rogers, Rodrigo Rocha and anonymous

reviewers for their help during various stages of this work.

38

REFERENCES

[1] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt, “Dynamic
warp formation and scheduling for efficient gpu control flow,” in
40th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO 2007), 2007, pp. 407–420.
[2] W. W. L. Fung and T. M. Aamodt, “Thread block compaction for

efficient simt control flow,” in 2011 IEEE 17th International Symposium

on High Performance Computer Architecture, 2011, pp. 25–36.
[3] M. Rhu and M. Erez, “The dual-path execution model for efficient gpu

control flow,” in 2013 IEEE 19th International Symposium on High

Performance Computer Architecture (HPCA), 2013, pp. 591–602.
[4] W.-K. Chen, B. Li, and R. Gupta, “Code compaction of matching single-

entry multiple-exit regions,” in Proceedings of the 10th International

Conference on Static Analysis, ser. SAS’03. Berlin, Heidelberg:
Springer-Verlag, 2003, p. 401–417.

[5] B. Coutinho, D. Sampaio, F. M. Q. Pereira, and W. Meira Jr., “Diver-
gence analysis and optimizations,” in 2011 International Conference on

Parallel Architectures and Compilation Techniques, 2011, pp. 320–329.
[6] C. Lattner and V. Adve, “Llvm: a compilation framework for lifelong

program analysis transformation,” in International Symposium on Code

Generation and Optimization, 2004. CGO 2004., 2004, pp. 75–86.
[7] “HIP Programming Guide v4.1,” [Accessed 17-Dec-2021]. [Online].

Available: https://rocmdocs.amd.com/en/latest/
[8] “CUDA C++ Programming Guide,” [Accessed 17-Dec-2021]. [Online].

Available: https://docs.nvidia.com/cuda/cuda-c-programming-guide/
index.html

[9] “NVCC :: CUDA Toolkit Documentation,” [Accessed 17-
Dec-2021]. [Online]. Available: https://docs.nvidia.com/cuda/
cuda-compiler-driver-nvcc/index.html

[10] “ROCm Compiler SDK,” [Accessed 17-Dec-2021]. [Online].
Available: https://rocmdocs.amd.com/en/latest/ROCm_Compiler_SDK/
ROCm-Compiler-SDK.html

[11] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck, “Efficiently computing static single assignment form
and the control dependence graph,” ACM Trans. Program. Lang.

Syst., vol. 13, no. 4, p. 451–490, Oct. 1991. [Online]. Available:
https://doi.org/10.1145/115372.115320

[12] R. Karrenberg and S. Hack, “Improving performance of opencl on
cpus,” in Compiler Construction, M. O’Boyle, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 1–20.

[13] J. Rosemann, S. Moll, and S. Hack, “An abstract interpretation
for spmd divergence on reducible control flow graphs,” Proc. ACM

Program. Lang., vol. 5, no. POPL, Jan. 2021. [Online]. Available:
https://doi.org/10.1145/3434312

[14] K. E. Batcher, “Sorting networks and their applications,” in Proceedings

of the April 30–May 2, 1968, spring joint computer conference (AFIPS

’68 (Spring)), 1968, p. 307–314.
[15] D. Cederman and P. Tsigas, “Gpu-quicksort: A practical quicksort

algorithm for graphics processors,” ACM J. Exp. Algorithmics, vol. 14,
Jan. 2010. [Online]. Available: https://doi.org/10.1145/1498698.1564500

[16] “llvm::RegionBase Class Template Reference,” [Accessed 17-
Dec-2021]. [Online]. Available: https://llvm.org/doxygen/classllvm_
1_1RegionBase.html

[17] R. Johnson, D. Pearson, and K. Pingali, “The program structure
tree: Computing control regions in linear time,” SIGPLAN Not.,
vol. 29, no. 6, p. 171–185, Jun. 1994. [Online]. Available:
https://doi.org/10.1145/773473.178258

[18] “Using cuda warp-level primitives,” [Accessed 17-Dec-
2021]. [Online]. Available: https://developer.nvidia.com/blog/
using-cuda-warp-level-primitives/

[19] T. Smith and M. Waterman, “Identification of common molecular
subsequences,” Journal of Molecular Biology, vol. 147, no. 1, pp.
195–197, 1981. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/0022283681900875

[20] R. C. O. Rocha, P. Petoumenos, Z. Wang, M. Cole, and H. Leather,
“Function merging by sequence alignment,” in 2019 IEEE/ACM Interna-

tional Symposium on Code Generation and Optimization (CGO), 2019,
pp. 149–163.

[21] R. C. O. Rocha, P. Petoumenos, Z. Wang, M. Cole, and H. Leather,
“Effective function merging in the ssa form,” in Proceedings of the 41st

ACM SIGPLAN Conference on Programming Language Design and

Implementation, ser. PLDI 2020. New York, NY, USA: Association

for Computing Machinery, 2020, p. 854–868. [Online]. Available:
https://doi.org/10.1145/3385412.3386030

[22] “CostModel.cpp File Reference,” [Accessed 17-Dec-2021]. [Online].
Available: https://llvm.org/doxygen/CostModel_8cpp.html

[23] “llc - LLVM static compiler,” [Accessed 17-Dec-2021]. [Online].
Available: https://llvm.org/docs/CommandGuide/llc.html

[24] C. Saumya, K. Sundararajah, and M. Kulkarni, “Darm: Control-flow
melding for simt thread divergence reduction - extended version,” 2021.

[25] E. Herruzo, G. Ruiz, J. I. Benavides, and O. Plata, “A new parallel
sorting algorithm based on odd-even mergesort,” in 15th EUROMICRO

International Conference on Parallel, Distributed and Network-Based

Processing (PDP’07), 2007, pp. 18–22.
[26] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and

K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in 2009 IEEE International Symposium on Workload Characterization

(IISWC), 2009, pp. 44–54.
[27] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,

“Analyzing cuda workloads using a detailed gpu simulator,” in 2009

IEEE International Symposium on Performance Analysis of Systems and

Software, 2009, pp. 163–174.
[28] “CUDA Samples,” [Accessed 17-Dec-2021]. [Online]. Available:

https://docs.nvidia.com/cuda/cuda-samples/
[29] A. Kerr, G. Diamos, and S. Yalamanchili, “A characterization and

analysis of ptx kernels,” in 2009 IEEE International Symposium on

Workload Characterization (IISWC), 2009, pp. 3–12.
[30] “ ROCm-Developer-Tools / rocprofiler ,” [Accessed 17-Dec-2021]. [On-

line]. Available: https://github.com/ROCm-Developer-Tools/rocprofiler
[31] T. Schaub, S. Moll, R. Karrenberg, and S. Hack, “The impact of

the simd width on control-flow and memory divergence,” ACM Trans.

Archit. Code Optim., vol. 11, no. 4, Jan. 2015. [Online]. Available:
https://doi.org/10.1145/2687355

[32] R. Karrenberg and S. Hack, “Whole Function Vectorization,” in
International Symposium on Code Generation and Optimization, ser.
CGO, 2011. [Online]. Available: http://www.cdl.uni-saarland.de/papers/
karrenberg_wfv.pdf

[33] S. Moll and S. Hack, “Partial Control-flow Linearization,” in
Proceedings of the 39th ACM SIGPLAN Conference on Programming

Language Design and Implementation, ser. PLDI 2018. New
York, NY, USA: ACM, 2018, pp. 543–556. [Online]. Available:
http://doi.acm.org/10.1145/3192366.3192413

[34] T. Lloyd, K. Ali, and J. N. Amaral, “Gpucheck: Detecting cuda thread
divergence with static analysis,” Deparment of Computer Science,
University of Alberta, Tech. Rep., 2019. [Online]. Available: https:
//era.library.ualberta.ca/items/7ab2b28d-b111-448f-8273-2ff219132908

[35] J. Anantpur and G. R., “Taming control divergence in gpus through
control flow linearization,” in Compiler Construction, A. Cohen, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 133–153.

[36] J. Fukuhara and M. Takimoto, “Branch divergence reduction based on
code motion,” Journal of Information Processing, vol. 28, pp. 302–309,
2020.

[37] F. Khorasani, R. Gupta, and L. N. Bhuyan, “Efficient warp
execution in presence of divergence with collaborative context
collection,” in Proceedings of the 48th International Symposium on

Microarchitecture, ser. MICRO-48. New York, NY, USA: Association
for Computing Machinery, 2015, p. 204–215. [Online]. Available:
https://doi.org/10.1145/2830772.2830796

[38] T. D. Han and T. S. Abdelrahman, “Reducing branch divergence in
gpu programs,” in Proceedings of the Fourth Workshop on General

Purpose Processing on Graphics Processing Units, ser. GPGPU-4.
New York, NY, USA: Association for Computing Machinery, 2011.
[Online]. Available: https://doi.org/10.1145/1964179.1964184

[39] S. Damani, D. R. Johnson, M. Stephenson, S. W. Keckler, E. Yan,
M. McKeown, and O. Giroux, “Speculative reconvergence for improved
simt efficiency,” in Proceedings of the 18th ACM/IEEE International

Symposium on Code Generation and Optimization, ser. CGO 2020.
New York, NY, USA: Association for Computing Machinery, 2020, p.
121–132. [Online]. Available: https://doi.org/10.1145/3368826.3377911

[40] S. Damani and V. Sarkar, “Common subexpression convergence: A new
code optimization for simt processors,” in Languages and Compilers

for Parallel Computing, S. Pande and V. Sarkar, Eds. Cham: Springer
International Publishing, 2021, pp. 64–73.

[41] W. W. L. Fung and T. M. Aamodt, “Thread block compaction for
efficient simt control flow,” in 2011 IEEE 17th International Symposium

on High Performance Computer Architecture, 2011, pp. 25–36.

39

[42] T. G. Rogers, D. R. Johnson, M. O’Connor, and S. W. Keckler, “A
variable warp size architecture,” in Proceedings of the 42nd Annual

International Symposium on Computer Architecture, ser. ISCA ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p.
489–501. [Online]. Available: https://doi.org/10.1145/2749469.2750410

[43] J. Meng, D. Tarjan, and K. Skadron, “Dynamic warp subdivision
for integrated branch and memory divergence tolerance,” SIGARCH

Comput. Archit. News, vol. 38, no. 3, p. 235–246, Jun. 2010. [Online].
Available: https://doi.org/10.1145/1816038.1815992

[44] A. ElTantawy, J. W. Ma, M. O’Connor, and T. M. Aamodt, “A scalable
multi-path microarchitecture for efficient gpu control flow,” in 2014

IEEE 20th International Symposium on High Performance Computer

Architecture (HPCA), 2014, pp. 248–259.
[45] M. Pharr and W. R. Mark, “ispc: A spmd compiler for high-performance

cpu programming,” in 2012 Innovative Parallel Computing (InPar),
2012, pp. 1–13.

[46] C. Cadar, “Targeted program transformations for symbolic execution,”
in Proceedings of the 2015 10th Joint Meeting on Foundations of

Software Engineering, ser. ESEC/FSE 2015. New York, NY, USA:
Association for Computing Machinery, 2015, p. 906–909. [Online].
Available: https://doi.org/10.1145/2786805.2803205

40

