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Performance Inputs

• Understanding program behavior under worst-case load is critical for 
avoiding unexpected/ buggy program operation
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Performance Inputs

• Understanding program behavior under worst-case load is critical for 
avoiding unexpected/ buggy program operation
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Why Performance Inputs?

• Algorithmic complexity attacks
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Why Performance Inputs?
• Some bugs manifests only in large scale  (e.g. “ Integer overflow 

bugs”)
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Integer overflow bug in Boeing 
737 software (2015)
Source : www.theguardian.com

• Performance bug in one version of the 
parallel program library MPICH2 
caused by a integer overflow 

• Bug manifests only when the parallel 
application works with massive 
amounts of data and processes

Source : 
https://lists.mpich.org/pipermail/discuss/2015-
October/004193.html

Correctness Testing is not enough!

Performance Testing at large scale is important to 

identify these bugs



Goal of XSTRESSOR
• Automatically generate large-scale performance inputs for programs 

with loops (worst-case inputs)
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XSTRESSOR

Worst case at input size 10

10,9,8,7,6,5,4,3,2,1

Worst case at input size 1000

1000,999,……………3,2,1



Goal of XSTRESSOR
• Automatically generate large-scale performance inputs for programs 

with loops (worst-case inputs)
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XSTRESSOR

Worst case at input size 10

10,9,8,7,6,5,4,3,2,1

Worst case at input size 1000

1000,999,……………3,2,1

Do this faster and more 
efficiently than existing 

techniques



Related Work 
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Program

Symbolic execution based approaches 

• WISE [1] – ICSE 2009
• SPF-WCA [2] – ICST 2017

Symbolic 
execution at 
small scale

Worst-case 
branch policy

Symbolic 
execution at 
large scale

Large scale 
worst-case 

input

Fuzzing based approaches

• SlowFuzz [3] – CCS 2017
• PerfFuzz [4] – ISSTA 2018 

Program
Feedback 
directed 

mutational 
fuzzing

Seed 
inputs

Performance 
test suite

Still relies on symbolic execution at large 
scale

No guarantee on finding the optimal 
worst-case input

[1] Jacob Burnim, Sudeep Juvekar, and Koushik Sen. Wise: Automated test generation for worst-case complexity. ICSE ’09
[2] Kasper Luckow, Rody Kersten, and Corina Pasareanu. Symbolic complexity analysis using context-preserving histories. ICST’17
[3] T. Petsios, J. Zhao, A. D. Keromytis, and S. Jana. Slowfuzz: Automated domain-independent detection of algorithmic complexity 
vulnerabilities. CCS ’17
[4] C. Lemieux, R. Padhye, K. Sen, and D. Song. Perffuzz: Automatically generating pathological inputs. ISSTA 2018
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Program

Symbolic execution based approaches 

• WISE [1] – ICSE 2009
• SPF-WCA [2] – ICST 2017

Symbolic 
execution at 
small scale

Worst-case 
branch policy

Symbolic 
execution at 
large scale

Large scale 
worst-case 

input

Fuzzing based approaches

• SlowFuzz [3] – CCS 2017
• PerfFuzz [4] – ISSTA 2018 

Program
Feedback 
directed 

mutational 
fuzzing

Seed 
inputs

Performance 
test suite

Still relies on symbolic execution at large 
scale

No guarantee on finding the optimal 
worst-case input

[1] Jacob Burnim, Sudeep Juvekar, and Koushik Sen. Wise: Automated test generation for worst-case complexity. ICSE ’09
[2] Kasper Luckow, Rody Kersten, and Corina Pasareanu. Symbolic complexity analysis using context-preserving histories. ICST’17
[3] T. Petsios, J. Zhao, A. D. Keromytis, and S. Jana. Slowfuzz: Automated domain-independent detection of algorithmic complexity 
vulnerabilities. CCS ’17
[4] C. Lemieux, R. Padhye, K. Sen, and D. Song. Perffuzz: Automatically generating pathological inputs. ISSTA 2018

Can we avoid the scalability bottlenecks and still have 
the benefits of symbolic execution for generating 

worst-case inputs at scale? 



XSTRESSOR Approach
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XSTRESSOR Approach

12

Symbolic 
execution 

in small scale
Scale 1,2,…M

Worst-case path 
conditions

[scale 1,2,…,M]

Worst-case
path condition 

generator

Large scale 
worst-case input 

at scale N 
(N>>M)

SMT solver

Scale N

Identify the 
hot loops

Model building phase 

Prediction phase

Does not require symbolic
Execution at large scale



Insertion sort example
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True branch is taken in all iterations of 
inner loop

arr[0] > arr[1]

arr[1] > arr[2]

arr[0] > arr[2]

arr[2] > arr[3]

arr[1] > arr[3]

arr[0] > arr[3]

T

T

T

T

T F

F

F

F

F

Symbolic computation tree 
for input scale 4



Insertion sort example
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True branch is taken in all iterations of 
inner loop

(arr[0] > arr[1])∧
(arr[1] > arr[2])∧
(arr[0] > arr[2])∧
(arr[2] > arr[3])∧
(arr[1] > arr[3])∧
(arr[0] > arr[3])

Worst-case path condition input scale 4 



Insertion sort example
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True branch is taken in all iterations of 
inner loop

(arr[0] > arr[1])∧
(arr[1] > arr[2])∧
(arr[0] > arr[2])∧
(arr[2] > arr[3])∧
(arr[1] > arr[3])∧
(arr[0] > arr[3])∧
(arr[3] > arr[4])∧
(arr[2] > arr[4])∧
(arr[1] > arr[4])∧
(arr[0] > arr[4])

Worst-case path condition input scale 5 



Insertion sort example
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True branch is taken in all iterations of 
inner loop

(arr[0] > arr[1])∧
(arr[1] > arr[2])∧
(arr[0] > arr[2])∧
(arr[2] > arr[3])∧
(arr[1] > arr[3])∧
(arr[0] > arr[3])∧
(arr[3] > arr[4])∧
(arr[2] > arr[4])∧
(arr[1] > arr[4])∧
(arr[0] > arr[4])∧
(arr[4] > arr[5])∧
(arr[3] > arr[5])∧
(arr[2] > arr[5])∧
(arr[1] > arr[5])∧
(arr[0] > arr[5])∧
(arr[5] > arr[6])∧
(arr[4] > arr[6])∧
(arr[3] > arr[6])∧
(arr[2] > arr[6])∧
(arr[1] > arr[6])∧
(arr[0] > arr[6])∧

Worst-case path condition input scale 8

(arr[6] > arr[7])∧
(arr[5] > arr[7])∧
(arr[4] > arr[7])∧
(arr[3] > arr[7])∧
(arr[2] > arr[7])∧
(arr[1] > arr[7])∧
(arr[0] > arr[7])∧
(arr[7] > arr[8])∧
(arr[6] > arr[8])∧
(arr[5] > arr[8])∧
(arr[4] > arr[8])∧
(arr[3] > arr[8])∧
(arr[2] > arr[8])∧
(arr[1] > arr[8])∧
(arr[0] > arr[8])



Insertion sort example
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True branch is taken in all iterations of 
inner loop

(arr[0] > arr[1])∧
(arr[1] > arr[2])∧
(arr[0] > arr[2])∧
(arr[2] > arr[3])∧
(arr[1] > arr[3])∧
(arr[0] > arr[3])∧
(arr[3] > arr[4])∧
(arr[2] > arr[4])∧
(arr[1] > arr[4])∧
(arr[0] > arr[4])∧
(arr[4] > arr[5])∧
(arr[3] > arr[5])∧
(arr[2] > arr[5])∧
(arr[1] > arr[5])∧
(arr[0] > arr[5])∧
(arr[5] > arr[6])∧
(arr[4] > arr[6])∧
(arr[3] > arr[6])∧
(arr[2] > arr[6])∧
(arr[1] > arr[6])∧
(arr[0] > arr[6])∧

Worst-case path condition input scale 8

(arr[6] > arr[7])∧
(arr[5] > arr[7])∧
(arr[4] > arr[7])∧
(arr[3] > arr[7])∧
(arr[2] > arr[7])∧
(arr[1] > arr[7])∧
(arr[0] > arr[7])∧
(arr[7] > arr[8])∧
(arr[6] > arr[8])∧
(arr[5] > arr[8])∧
(arr[4] > arr[8])∧
(arr[3] > arr[8])∧
(arr[2] > arr[8])∧
(arr[1] > arr[8])∧
(arr[0] > arr[8])Can we identify the pattern and give a parametric 

representation for these constraints?



Insertion sort example
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True branch is taken in all iterations of 
inner loop

(arr[0] > arr[1])∧
(arr[1] > arr[2])∧
(arr[0] > arr[2])∧
(arr[2] > arr[3])∧
(arr[1] > arr[3])∧
(arr[0] > arr[3])

arr[j] > arr[i]

Variation of j
[0],[1,0],[2,1,0]

Inner loop induction 
variable Induction 

variable 
sequences Outer  loop induction 

variable 

“[“ and “]” represent loop entry and exit 

Variation of i
[1],[2,2],[3,3,3]

Inner loop induction variable

Outer loop induction variable

Worst-case path condition
at input scale 4 



Induction variable sequences
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• Nested loops generate induction variable sequences with nested 
structure. Complex sequences are a combination of simpler 
sequences 

• Simpler sequences fall into two categories

Variation of j
0,1,0,2,1,0

Variation of j
[0],[1,0],[2,1,0]

Apply loop 
boundaries 

Increment sequences
• Variable is incremented/ decremented 

by a fixed amount
• Example :

[0,1,2,3,4,5]
• Parameterized initial value, final value 

and a step

Constant sequences
• Variable remains constant 
• Example :

[2,2,2,2,2]
• Parameterized by a constant, no of 

repetitions



Induction variable sequences
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• Nested loops generate induction variable sequences with nested 
structure. Complex sequences are a combination of simpler 
sequences 

• Simpler sequences fall into two categories

Variation of j
0,1,0,2,1,0

Variation of j
[0],[1,0],[2,1,0]

Apply loop 
boundaries 

Increment sequences
• Variable is incremented/ decremented 

by a fixed amount
• Example :

[0,1,2,3,4,5]
• Parameterized initial value, final value 

and a step

Constant sequences
• Variable remains constant 
• Example :

[2,2,2,2,2]
• Parameterized by a constant, no of 

repetitions

XSTRESSOR uses a context free grammar to describe these sequences

Induction variable sequence generators (ISG) 



Context Free Grammar to describe ISGs
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X – sequence of integers / integer
I  – increment sequence
C – constant sequence



Context Free Grammar to describe ISGs
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X – sequence of integers / integer
I  – increment sequence
C – constant sequence

• incre function 

e.g. ∶

• This is analogous to some variable 
incremented by a fixed amount inside a loop

[0,1,2,3,4]  incre(0,4,1)  

Initial value 

Final value

step



Context Free Grammar to describe ISGs
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X – sequence of integers / integer
I  – increment sequence
C – constant sequence

• const function 

e.g. ∶

• This is analogous to a variable that remains 
constant in some number of iterations of a 
loop

[2,2,2,2]  const(2,4)  

Const  value repetitions



Context Free Grammar to describe ISGs
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X – sequence of integers / integer
I  – increment sequence
C – constant sequence

• Sequences itself can be arguments to const
and incre functions 

• This can represent the induction variable 
sequences generated by nested loops

const([0,1,2],[2,2,2]) const(0,2) Ꚛconst(1,2) Ꚛ const(2,2)  

Ꚛ - concatenation operator 



How to construct an ISG
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[0],[1,0],[2,1,0,],[3,2,1,0]



How to construct an ISG
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[0],[1,0],[2,1,0,],[3,2,1,0]

incre(0,0,-1) Ꚛ incre(1,0,-1) Ꚛ incre(2,0,-1) Ꚛ incre(3,0,-1)

Ꚛ - concatenation operator 



How to construct an ISG
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[0],[1,0],[2,1,0,],[3,2,1,0]

incre(0,0,-1) Ꚛ incre(1,0,-1) Ꚛ incre(2,0,-1) Ꚛ incre(3,0,-1)

incre([0,1,2,3], [0,0,0,0], -1)

Ꚛ - concatenation operator 



How to construct an ISG

28

[0],[1,0],[2,1,0,],[3,2,1,0]

incre(0,0,-1) Ꚛ incre(1,0,-1) Ꚛ incre(2,0,-1) Ꚛ incre(3,0,-1)

incre([0,1,2,3], [0,0,0,0], -1)

incre(incre(0,3,1), const(0,4), -1)

Induction variable sequence 
generator (ISG)Ꚛ - concatenation operator 



Back to motivating example
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True branch is taken in all iterations of 
inner loop

arr[j] > arr[i]

Variable “j”

[0],[1,0],[2,1,0] incre( incre(0, 2, 1), const(0, 3), −1)

Scale 4



Back to motivating example
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True branch is taken in all iterations of 
inner loop

arr[j] > arr[i]

[0],[1,0],[2,1,0] incre( incre(0, 2, 1), const(0, 3), −1)

[0],[1,0],[2,1,0],[3,2,1,0] incre( incre(0, 3, 1), const(0, 4), −1)

Scale 4

Scale 5

Variable “j”



Back to motivating example
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True branch is taken in all iterations of 
inner loop

arr[j] > arr[i]

[0],[1,0],[2,1,0] incre( incre(0, 2, 1), const(0, 3), −1)

[0],[1,0],[2,1,0],[3,2,1,0] incre( incre(0, 3, 1), const(0, 4), −1)

[0],[1,0],….[N-2,N-1,….,1,0] incre( incre(0,N−2, 1), const(0,N−1), −1)

Scale 4

Scale 5

Scale N

A general ISG is learned using model fitting
e.g. : polynomial model fitting

Variable “j”



Back to motivating example
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True branch is taken in all iterations of 
inner loop

arr[j] > arr[i]

[1],[2,2],[3,3,3] const(incre(1, 3, 1), incre(1, 3, 1))

[1],[2,2],[3,3,3],[4,4,4,4] const(incre(1, 4, 1), incre(1, 4, 1))

[1],[2,2],….[N-1,N-1,….,N-1] const(incre(1,N − 1, 1), incre(1,N − 1, 1))

Scale 4

Scale 5

Scale N

General ISG for variable “i”

Variable “i”



Inferring conditions at large scale
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arr[j] > arr[i]

incre( incre(0,N−2, 1), const(0,N−1), −1) const(incre(1,N − 1, 1), incre(1,N − 1, 1))

G1 G2



Inferring conditions at large scale
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arr[j] > arr[i]

incre( incre(0,N−2, 1), const(0,N−1), −1) const(incre(1,N − 1, 1), incre(1,N − 1, 1))

For any scale K,

G1 G2

arr[j] > arr[i]

G1(K) G2(K)

Worst case conditions for scale K



Evaluation Setup

35

• Compared against WISE, SPF-WCA

• 7 Micro benchmarks

• 2 case studies (GNU grep , GNU cmp)

• Various input scales 

• 12 hours 

• Machine specs 
• 8-core Intel Xeon 2.7 GHz 20MB L3 cache

• 192 GB ram



Evaluation – micro benchmarks
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Input scale 50

Benchmark Time (seconds)

XSTRESSOR WISE SPF-WCA

Insertion sort 1.85 49.57 72.86

Sorted list (insert) 1.65 62.39 86.88

Merge sorted lists 2.16 OOT 29.96

Binary tree (search) 3.97 56.29 237.67

Dijkstra’s 6.32 9.68 1714.26

Boolean matrix 
multiplication

107.87 960.03 OOT

Traveling salesman OOT OOM OOT

Input scale 500

Benchmark Time (seconds)

XSTRESSOR WISE SPF-WCA

Insertion sort 96.73 OOT OOM

Sorted list (insert) 1.79 OOT OOM

Merge sorted lists 2.57 OOT 46.62

Binary tree (search) 103.74 OOT OOM

Dijkstra’s 12830 3099.41 OOT

Boolean matrix 
multiplication

OOT OOM OOT

Traveling salesman OOT OOT OOT

XSTRESSOR can generate the worst-case inputs within seconds for most benchmarks 



Evaluation – Time spent in each phase 
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• Time spent in model building is a 
one-time thing

• Time spent in path prediction and 
solving the paths constraints 
increases with the input scale



Evaluation – case studies
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• All three techniques perform well in GNU cmp
• For GNU grep WISE, SPF-WCA runs out of time,

• Worst-case branch behavior is scale-dependent ( take TRUE branch after taking (N-1) FALSE branches)
• XSTRESSOR’s ISGs are capable of capturing such behavior 

W – WISE
I – SPF-WCA 
X – XSTRESSOR



Conclusion
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• Complexity Testing in large scale is essential for resolving 
performance problems and algorithmic complexity attacks

• XSTRESSOR avoids the drawbacks of existing white-box techniques for 
complexity testing by directly predicting the worst-case path 
condition using “Path generators (ISGs)”

• XSTRESSOR overperforms the existing white-box techniques by a 
reasonable margin and also scale to large input scales



40

THANK YOU


