
XSTRESSOR: Automatic Generation of
Large-Scale Worst-Case Test Inputs

by Inferring Path Conditions

Charitha Saumya, Jinkyu Koo, Milind Kulkarni, and Saurabh Bagchi
Electrical and Computer Engineering

Purdue University

1

Outline

• Motivation

• Related work

• Method

• Evaluation

• Conclusion

2

Performance Inputs

• Understanding program behavior under worst-case load is critical for
avoiding unexpected/ buggy program operation

3

Small scale
Inputs

Program

Expected program
behavior

Test Environment

Performance Inputs

• Understanding program behavior under worst-case load is critical for
avoiding unexpected/ buggy program operation

4

Large scale
worst-case

inputs

Program

• Long runtimes
Unnecessary/unexpected
resource consumption

• Scale dependent bugs
Small scale

Inputs

Program

Expected program
behavior

Test Environment

Deployed in actual environment

Why Performance Inputs?

• Algorithmic complexity attacks

5

Why Performance Inputs?
• Some bugs manifests only in large scale (e.g. “ Integer overflow

bugs”)

6

Integer overflow bug in Boeing
737 software (2015)
Source : www.theguardian.com

• Performance bug in one version of the
parallel program library MPICH2
caused by a integer overflow

• Bug manifests only when the parallel
application works with massive
amounts of data and processes

Source :
https://lists.mpich.org/pipermail/discuss/2015-
October/004193.html

Correctness Testing is not enough!

Performance Testing at large scale is important to

identify these bugs

Goal of XSTRESSOR
• Automatically generate large-scale performance inputs for programs

with loops (worst-case inputs)

7

XSTRESSOR

Worst case at input size 10

10,9,8,7,6,5,4,3,2,1

Worst case at input size 1000

1000,999,……………3,2,1

Goal of XSTRESSOR
• Automatically generate large-scale performance inputs for programs

with loops (worst-case inputs)

8

XSTRESSOR

Worst case at input size 10

10,9,8,7,6,5,4,3,2,1

Worst case at input size 1000

1000,999,……………3,2,1

Do this faster and more
efficiently than existing

techniques

Related Work

9

Program

Symbolic execution based approaches

• WISE [1] – ICSE 2009
• SPF-WCA [2] – ICST 2017

Symbolic
execution at
small scale

Worst-case
branch policy

Symbolic
execution at
large scale

Large scale
worst-case

input

Fuzzing based approaches

• SlowFuzz [3] – CCS 2017
• PerfFuzz [4] – ISSTA 2018

Program
Feedback
directed

mutational
fuzzing

Seed
inputs

Performance
test suite

Still relies on symbolic execution at large
scale

No guarantee on finding the optimal
worst-case input

[1] Jacob Burnim, Sudeep Juvekar, and Koushik Sen. Wise: Automated test generation for worst-case complexity. ICSE ’09
[2] Kasper Luckow, Rody Kersten, and Corina Pasareanu. Symbolic complexity analysis using context-preserving histories. ICST’17
[3] T. Petsios, J. Zhao, A. D. Keromytis, and S. Jana. Slowfuzz: Automated domain-independent detection of algorithmic complexity
vulnerabilities. CCS ’17
[4] C. Lemieux, R. Padhye, K. Sen, and D. Song. Perffuzz: Automatically generating pathological inputs. ISSTA 2018

Related Work

10

Program

Symbolic execution based approaches

• WISE [1] – ICSE 2009
• SPF-WCA [2] – ICST 2017

Symbolic
execution at
small scale

Worst-case
branch policy

Symbolic
execution at
large scale

Large scale
worst-case

input

Fuzzing based approaches

• SlowFuzz [3] – CCS 2017
• PerfFuzz [4] – ISSTA 2018

Program
Feedback
directed

mutational
fuzzing

Seed
inputs

Performance
test suite

Still relies on symbolic execution at large
scale

No guarantee on finding the optimal
worst-case input

[1] Jacob Burnim, Sudeep Juvekar, and Koushik Sen. Wise: Automated test generation for worst-case complexity. ICSE ’09
[2] Kasper Luckow, Rody Kersten, and Corina Pasareanu. Symbolic complexity analysis using context-preserving histories. ICST’17
[3] T. Petsios, J. Zhao, A. D. Keromytis, and S. Jana. Slowfuzz: Automated domain-independent detection of algorithmic complexity
vulnerabilities. CCS ’17
[4] C. Lemieux, R. Padhye, K. Sen, and D. Song. Perffuzz: Automatically generating pathological inputs. ISSTA 2018

Can we avoid the scalability bottlenecks and still have
the benefits of symbolic execution for generating

worst-case inputs at scale?

XSTRESSOR Approach

11

Symbolic
execution

in small scale
Scale 1,2,…M

Worst-case path
conditions

[scale 1,2,…,M]

Worst-case
path condition

generator

Large scale
worst-case input

at scale N
(N>>M)

SMT solver

Scale N

Identify the
hot loops

Model building phase

XSTRESSOR Approach

12

Symbolic
execution

in small scale
Scale 1,2,…M

Worst-case path
conditions

[scale 1,2,…,M]

Worst-case
path condition

generator

Large scale
worst-case input

at scale N
(N>>M)

SMT solver

Scale N

Identify the
hot loops

Model building phase

Prediction phase

Does not require symbolic
Execution at large scale

Insertion sort example

13

True branch is taken in all iterations of
inner loop

arr[0] > arr[1]

arr[1] > arr[2]

arr[0] > arr[2]

arr[2] > arr[3]

arr[1] > arr[3]

arr[0] > arr[3]

T

T

T

T

T F

F

F

F

F

Symbolic computation tree
for input scale 4

Insertion sort example

14

True branch is taken in all iterations of
inner loop

(arr[0] > arr[1])∧
(arr[1] > arr[2])∧
(arr[0] > arr[2])∧
(arr[2] > arr[3])∧
(arr[1] > arr[3])∧
(arr[0] > arr[3])

Worst-case path condition input scale 4

Insertion sort example

15

True branch is taken in all iterations of
inner loop

(arr[0] > arr[1])∧
(arr[1] > arr[2])∧
(arr[0] > arr[2])∧
(arr[2] > arr[3])∧
(arr[1] > arr[3])∧
(arr[0] > arr[3])∧
(arr[3] > arr[4])∧
(arr[2] > arr[4])∧
(arr[1] > arr[4])∧
(arr[0] > arr[4])

Worst-case path condition input scale 5

Insertion sort example

16

True branch is taken in all iterations of
inner loop

(arr[0] > arr[1])∧
(arr[1] > arr[2])∧
(arr[0] > arr[2])∧
(arr[2] > arr[3])∧
(arr[1] > arr[3])∧
(arr[0] > arr[3])∧
(arr[3] > arr[4])∧
(arr[2] > arr[4])∧
(arr[1] > arr[4])∧
(arr[0] > arr[4])∧
(arr[4] > arr[5])∧
(arr[3] > arr[5])∧
(arr[2] > arr[5])∧
(arr[1] > arr[5])∧
(arr[0] > arr[5])∧
(arr[5] > arr[6])∧
(arr[4] > arr[6])∧
(arr[3] > arr[6])∧
(arr[2] > arr[6])∧
(arr[1] > arr[6])∧
(arr[0] > arr[6])∧

Worst-case path condition input scale 8

(arr[6] > arr[7])∧
(arr[5] > arr[7])∧
(arr[4] > arr[7])∧
(arr[3] > arr[7])∧
(arr[2] > arr[7])∧
(arr[1] > arr[7])∧
(arr[0] > arr[7])∧
(arr[7] > arr[8])∧
(arr[6] > arr[8])∧
(arr[5] > arr[8])∧
(arr[4] > arr[8])∧
(arr[3] > arr[8])∧
(arr[2] > arr[8])∧
(arr[1] > arr[8])∧
(arr[0] > arr[8])

Insertion sort example

17

True branch is taken in all iterations of
inner loop

(arr[0] > arr[1])∧
(arr[1] > arr[2])∧
(arr[0] > arr[2])∧
(arr[2] > arr[3])∧
(arr[1] > arr[3])∧
(arr[0] > arr[3])∧
(arr[3] > arr[4])∧
(arr[2] > arr[4])∧
(arr[1] > arr[4])∧
(arr[0] > arr[4])∧
(arr[4] > arr[5])∧
(arr[3] > arr[5])∧
(arr[2] > arr[5])∧
(arr[1] > arr[5])∧
(arr[0] > arr[5])∧
(arr[5] > arr[6])∧
(arr[4] > arr[6])∧
(arr[3] > arr[6])∧
(arr[2] > arr[6])∧
(arr[1] > arr[6])∧
(arr[0] > arr[6])∧

Worst-case path condition input scale 8

(arr[6] > arr[7])∧
(arr[5] > arr[7])∧
(arr[4] > arr[7])∧
(arr[3] > arr[7])∧
(arr[2] > arr[7])∧
(arr[1] > arr[7])∧
(arr[0] > arr[7])∧
(arr[7] > arr[8])∧
(arr[6] > arr[8])∧
(arr[5] > arr[8])∧
(arr[4] > arr[8])∧
(arr[3] > arr[8])∧
(arr[2] > arr[8])∧
(arr[1] > arr[8])∧
(arr[0] > arr[8])Can we identify the pattern and give a parametric

representation for these constraints?

Insertion sort example

18

True branch is taken in all iterations of
inner loop

(arr[0] > arr[1])∧
(arr[1] > arr[2])∧
(arr[0] > arr[2])∧
(arr[2] > arr[3])∧
(arr[1] > arr[3])∧
(arr[0] > arr[3])

arr[j] > arr[i]

Variation of j
[0],[1,0],[2,1,0]

Inner loop induction
variable Induction

variable
sequences Outer loop induction

variable

“[“ and “]” represent loop entry and exit

Variation of i
[1],[2,2],[3,3,3]

Inner loop induction variable

Outer loop induction variable

Worst-case path condition
at input scale 4

Induction variable sequences

19

• Nested loops generate induction variable sequences with nested
structure. Complex sequences are a combination of simpler
sequences

• Simpler sequences fall into two categories

Variation of j
0,1,0,2,1,0

Variation of j
[0],[1,0],[2,1,0]

Apply loop
boundaries

Increment sequences
• Variable is incremented/ decremented

by a fixed amount
• Example :

[0,1,2,3,4,5]
• Parameterized initial value, final value

and a step

Constant sequences
• Variable remains constant
• Example :

[2,2,2,2,2]
• Parameterized by a constant, no of

repetitions

Induction variable sequences

20

• Nested loops generate induction variable sequences with nested
structure. Complex sequences are a combination of simpler
sequences

• Simpler sequences fall into two categories

Variation of j
0,1,0,2,1,0

Variation of j
[0],[1,0],[2,1,0]

Apply loop
boundaries

Increment sequences
• Variable is incremented/ decremented

by a fixed amount
• Example :

[0,1,2,3,4,5]
• Parameterized initial value, final value

and a step

Constant sequences
• Variable remains constant
• Example :

[2,2,2,2,2]
• Parameterized by a constant, no of

repetitions

XSTRESSOR uses a context free grammar to describe these sequences

Induction variable sequence generators (ISG)

Context Free Grammar to describe ISGs

21

X – sequence of integers / integer
I – increment sequence
C – constant sequence

Context Free Grammar to describe ISGs

22

X – sequence of integers / integer
I – increment sequence
C – constant sequence

• incre function

e.g. ∶

• This is analogous to some variable
incremented by a fixed amount inside a loop

[0,1,2,3,4] incre(0,4,1)

Initial value

Final value

step

Context Free Grammar to describe ISGs

23

X – sequence of integers / integer
I – increment sequence
C – constant sequence

• const function

e.g. ∶

• This is analogous to a variable that remains
constant in some number of iterations of a
loop

[2,2,2,2] const(2,4)

Const value repetitions

Context Free Grammar to describe ISGs

24

X – sequence of integers / integer
I – increment sequence
C – constant sequence

• Sequences itself can be arguments to const
and incre functions

• This can represent the induction variable
sequences generated by nested loops

const([0,1,2],[2,2,2]) const(0,2) Ꚛconst(1,2) Ꚛ const(2,2)

Ꚛ - concatenation operator

How to construct an ISG

25

[0],[1,0],[2,1,0,],[3,2,1,0]

How to construct an ISG

26

[0],[1,0],[2,1,0,],[3,2,1,0]

incre(0,0,-1) Ꚛ incre(1,0,-1) Ꚛ incre(2,0,-1) Ꚛ incre(3,0,-1)

Ꚛ - concatenation operator

How to construct an ISG

27

[0],[1,0],[2,1,0,],[3,2,1,0]

incre(0,0,-1) Ꚛ incre(1,0,-1) Ꚛ incre(2,0,-1) Ꚛ incre(3,0,-1)

incre([0,1,2,3], [0,0,0,0], -1)

Ꚛ - concatenation operator

How to construct an ISG

28

[0],[1,0],[2,1,0,],[3,2,1,0]

incre(0,0,-1) Ꚛ incre(1,0,-1) Ꚛ incre(2,0,-1) Ꚛ incre(3,0,-1)

incre([0,1,2,3], [0,0,0,0], -1)

incre(incre(0,3,1), const(0,4), -1)

Induction variable sequence
generator (ISG)Ꚛ - concatenation operator

Back to motivating example

29

True branch is taken in all iterations of
inner loop

arr[j] > arr[i]

Variable “j”

[0],[1,0],[2,1,0] incre(incre(0, 2, 1), const(0, 3), −1)

Scale 4

Back to motivating example

30

True branch is taken in all iterations of
inner loop

arr[j] > arr[i]

[0],[1,0],[2,1,0] incre(incre(0, 2, 1), const(0, 3), −1)

[0],[1,0],[2,1,0],[3,2,1,0] incre(incre(0, 3, 1), const(0, 4), −1)

Scale 4

Scale 5

Variable “j”

Back to motivating example

31

True branch is taken in all iterations of
inner loop

arr[j] > arr[i]

[0],[1,0],[2,1,0] incre(incre(0, 2, 1), const(0, 3), −1)

[0],[1,0],[2,1,0],[3,2,1,0] incre(incre(0, 3, 1), const(0, 4), −1)

[0],[1,0],….[N-2,N-1,….,1,0] incre(incre(0,N−2, 1), const(0,N−1), −1)

Scale 4

Scale 5

Scale N

A general ISG is learned using model fitting
e.g. : polynomial model fitting

Variable “j”

Back to motivating example

32

True branch is taken in all iterations of
inner loop

arr[j] > arr[i]

[1],[2,2],[3,3,3] const(incre(1, 3, 1), incre(1, 3, 1))

[1],[2,2],[3,3,3],[4,4,4,4] const(incre(1, 4, 1), incre(1, 4, 1))

[1],[2,2],….[N-1,N-1,….,N-1] const(incre(1,N − 1, 1), incre(1,N − 1, 1))

Scale 4

Scale 5

Scale N

General ISG for variable “i”

Variable “i”

Inferring conditions at large scale

33

arr[j] > arr[i]

incre(incre(0,N−2, 1), const(0,N−1), −1) const(incre(1,N − 1, 1), incre(1,N − 1, 1))

G1 G2

Inferring conditions at large scale

34

arr[j] > arr[i]

incre(incre(0,N−2, 1), const(0,N−1), −1) const(incre(1,N − 1, 1), incre(1,N − 1, 1))

For any scale K,

G1 G2

arr[j] > arr[i]

G1(K) G2(K)

Worst case conditions for scale K

Evaluation Setup

35

• Compared against WISE, SPF-WCA

• 7 Micro benchmarks

• 2 case studies (GNU grep , GNU cmp)

• Various input scales

• 12 hours

• Machine specs
• 8-core Intel Xeon 2.7 GHz 20MB L3 cache

• 192 GB ram

Evaluation – micro benchmarks

36

Input scale 50

Benchmark Time (seconds)

XSTRESSOR WISE SPF-WCA

Insertion sort 1.85 49.57 72.86

Sorted list (insert) 1.65 62.39 86.88

Merge sorted lists 2.16 OOT 29.96

Binary tree (search) 3.97 56.29 237.67

Dijkstra’s 6.32 9.68 1714.26

Boolean matrix
multiplication

107.87 960.03 OOT

Traveling salesman OOT OOM OOT

Input scale 500

Benchmark Time (seconds)

XSTRESSOR WISE SPF-WCA

Insertion sort 96.73 OOT OOM

Sorted list (insert) 1.79 OOT OOM

Merge sorted lists 2.57 OOT 46.62

Binary tree (search) 103.74 OOT OOM

Dijkstra’s 12830 3099.41 OOT

Boolean matrix
multiplication

OOT OOM OOT

Traveling salesman OOT OOT OOT

XSTRESSOR can generate the worst-case inputs within seconds for most benchmarks

Evaluation – Time spent in each phase

37

• Time spent in model building is a
one-time thing

• Time spent in path prediction and
solving the paths constraints
increases with the input scale

Evaluation – case studies

38

• All three techniques perform well in GNU cmp
• For GNU grep WISE, SPF-WCA runs out of time,

• Worst-case branch behavior is scale-dependent (take TRUE branch after taking (N-1) FALSE branches)
• XSTRESSOR’s ISGs are capable of capturing such behavior

W – WISE
I – SPF-WCA
X – XSTRESSOR

Conclusion

39

• Complexity Testing in large scale is essential for resolving
performance problems and algorithmic complexity attacks

• XSTRESSOR avoids the drawbacks of existing white-box techniques for
complexity testing by directly predicting the worst-case path
condition using “Path generators (ISGs)”

• XSTRESSOR overperforms the existing white-box techniques by a
reasonable margin and also scale to large input scales

40

THANK YOU

