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Stress testing

• Stress testing
o Testing the software beyond its normal operational capacity, and investigates 

the behavior of a program when subjected to heavy loads.

• The goal of such tests
o To identify performance bottlenecks

o To identify algorithmic complexity attacks

o To identify scale-dependent bugs 

• The key challenge
oHow to find the input that can lead to the worst-case complexity.
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Symbolic execution

• Runs a program using symbolic variables as 
inputs, instead of concrete values.

• Can explore all the possible execution paths, 
including the ones of
worst-case complexity.

• On each path that is executed, symbolic 
execution collects a
set of symbolic conditions, called a path 
condition.

• Then, it invokes a constraint solver, such as 
OpenSMT [7] or Z3 that generates concrete 
test input values.

• Path explosion: the number of paths to 
search increase exponentially with the size of 
the input.

def function(x, y, z):
….
if x>y:

….
if y>z:

….
….

x>y

y>z y>z

True False

True False
True

False

(x>y) and (y>z) (x<=y) and (y<=z)

Path conditions
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WISE-like algorithms
• WISE[1] and SPF-WCA[2]

o Learn a branching policy that results in a path of the worst-case complexity 
for small input sizes by using exhaustive search, and

o Then apply the learned branching policy to perform a guided search for a
large input size. 

Insertion sort: always True

The worst-case branching policy
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[1] Jacob Burnim, Sudeep Juvekar, and Koushik Sen. Wise: Automated test generation for worst-case complexity. ICSE ’09
[2] Kasper Luckow, Rody Kersten, and Corina Pasareanu. Symbolic complexity analysis using context-preserving histories. ICST’17



Limitations of WISE-like algorithms

• Assumes a continuous program behavior across scales
o Some conditional blocks are activated only when the input size is larger than a 

certain threshold.

• Irregular branching policy

Dijkstra implemented with min-
priority queue: no simple way to 
describe the worst-case 
branching policy
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Can we avoid/minimize these issues of 
white-box based approaches for 

large-scale test generation?



PySE Solution approach 

• PySE: learns the worst-case branching policy using Q-learning, a 
model-free reinforcement learning.
oUses symbolic execution to collect behavioral information of a given 

branching policy

oUpdates the policy based on Q-learning.
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Symbolic 
execution

Policy 
update

Observe the behavior  of a branching policy, i.e., the length of a path

Give a new branching policy



The main objective of PySE

• To find out a branching policy
𝝅(𝒔𝒕)for a given state 𝒔𝒕at the 𝑡-th branch 
condition that it encounters while a 
program is being symbolically executed.
o The branching policy 𝜋(𝑠𝑡) determines a 

branching decision 𝒂𝒕 = 𝜋 𝑠𝑡 ∈
{𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}, which we also call action.

o The state 𝑠𝑡 mainly consists of the current 
branch condition, previous 𝐿 branch 
conditions, and actions taken there.
✓ 𝐿: the history length

o The branching policy 𝜋(𝑠𝑡) continue 
evolving in
such a way that the length of an execution 
path increases.

The state 𝑠𝑡 at branch condition C1
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Workflow of PySE

• Step 1: (SYMBOLIC EXECUTION)
o Execute a program by the branching policy 𝜋 𝑠𝑡 .
oCollect resulting behavioral information such as which branch points the 

program visits, actions taken at each branch, and feasibilities of the actions.

• Step 2: (POLICY UPDATE)
oUpdate the branching policy 𝜋 𝑠𝑡 in a way that an undesirable action that 

caused a program to terminate quickly can be avoided in the future.
✓Q-learning
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Branching policy 𝜋 𝑠𝑡

• Design the branching policy 𝜋 𝑠𝑡 as:

𝜋 𝑠𝑡 = argmax
𝑎𝑡

𝑄(𝑠𝑡, 𝑎𝑡)

• 𝑄(𝑠𝑡 , 𝑎𝑡) is made from an artificial neural network (ANN), whose 
inputs are 𝑠𝑡and its output layer produces two values, 𝑄(𝑠𝑡, 𝑇𝑟𝑢𝑒)
and 𝑄 𝑠𝑡, 𝐹𝑎𝑙𝑠𝑒 .
o𝜋 𝑠𝑡 = 𝑇𝑟𝑢𝑒 if 𝑄 𝑠𝑡 , 𝑇𝑟𝑢𝑒 ≥ 𝑄 𝑠𝑡 , 𝐹𝑎𝑙𝑠𝑒 .
o𝜋 𝑠𝑡 = 𝐹𝑎𝑙𝑠𝑒 if 𝑄 𝑠𝑡 , 𝑇𝑟𝑢𝑒 < 𝑄 𝑠𝑡 , 𝐹𝑎𝑙𝑠𝑒 .
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State representation
• 𝑠𝑡 = (𝑠𝑡0, 𝑠𝑡1, … , 𝑠𝑡𝐿)

o 𝑠𝑡𝑙: an integer vector encoding the (𝑡 − 𝑙)-th branch condition and the action 
taken there.

• Encoding of a state when L = 2.
o F2: unique identifier for each branch 

point (e.g. line number)

o F3: action taken at the branch point ( 
1 = TRUE , 0 = FALSE)
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How to update the branching policy (1/3)

• Symbolic execution takes action 𝑎𝑡at a given state 𝑠𝑡and
observes its consequence.
oWhether the execution path is still feasible.

o Feasibility can be checked by using a constraint solver like Z3.

• Depending on the feasibility, the consequence of the action 𝑎𝑡at the 
state 𝑠𝑡is scored by a reward 𝑟𝑡: 
o 𝑟𝑡 = 1 if feasible, and 𝑟𝑡 = 𝑃 if not feasible.

o𝑃 = −20 so that the infeasible decision is more distinguishable from
the feasible one.
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How to update the branching policy (2/3)

• We want 𝜋 𝑠𝑡 to converge to the optimal branching policy 𝜋∗ 𝑠𝑡
that maximizes the expected sum of future rewards, 𝐸 σ𝑘=𝑡

𝑇 𝑟𝑘 𝑠𝑡 .
o T denotes the last branch condition before a program terminates normally or 

falls in an infeasible path condition.
o Thus, equivalently, it maximizes the length of a feasible execution path. 

• Define the optimal action-value function 𝑄∗(𝑠𝑡 , 𝑎𝑡) as the maximum 
expected sum of future rewards, after taking action 𝑎𝑡at a state 𝑠𝑡:

𝑄∗ 𝑠𝑡, 𝑎𝑡 = max
𝜋

𝐸 σ𝑘=𝑡
𝑇 𝑟𝑘 𝑠𝑡

• 𝑄∗(𝑠𝑡 , 𝑎𝑡) can be re-written recursively as: 
𝑄∗ 𝑠𝑡 , 𝑎𝑡 = 𝐸(𝑟𝑡 +max

𝑎𝑡+1
𝑄∗ 𝑠𝑡+1, 𝑎𝑡+1 )
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How to update the branching policy (3/3)

• We try to learn 𝑄∗(𝑠𝑡 , 𝑎𝑡) by a sample mean 𝑄(𝑠𝑡 , 𝑎𝑡):
𝑄 𝑠𝑡 , 𝑎𝑡 ← 1 − 𝛼 𝑄 𝑠𝑡 , 𝑎𝑡 + 𝛼(𝑟𝑡 +max

𝑎𝑡+1
𝑄 𝑠𝑡+1, 𝑎𝑡+1 )

o𝛼 is called a learning rate.

oBy the law of large numbers, 𝑄 𝑠𝑡 , 𝑎𝑡 can converge to 𝑄∗ 𝑠𝑡 , 𝑎𝑡 after 
iterations for a sufficiently small value of 𝛼.

o Such an update for learning 𝑄 𝑠𝑡 , 𝑎𝑡 without knowing the underlying 
probability distribution model is referred to as Q-learning in the 
reinforcement learning literature.
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Q-network architecture

• In practice, updating 𝑄 𝑠𝑡 , 𝑎𝑡 separately for 
each 𝑠𝑡 , 𝑎𝑡 is unattainable.
o This is because the state is a multi-dimensional 

integer vector and thus the number of possible 
states can be too large.

• Thus, a function approximator is commonly 
used to estimate the function 𝑄 𝑠𝑡 , 𝑎𝑡 with 
the limited number of observations for 
state-action pairs.

• PySE also represents 𝑄 𝑠𝑡 , 𝑎𝑡 by using an 
ANN-based function approximator, which 
we refer to as a Q-network.
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Algorithm of PySE

• Exploration of a new path by 
𝜖-greedy strategy.
o With 𝜖 probability, take 

random action instead of 
𝜋 𝑠𝑡 .

• Symbolic Execution step 
collects what is called the 
experience.
o 𝑒𝑡 = (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)

• Policy Update step uses 
these experiences to update 
the Q-network.
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Unique Path Finder (UPF)

• UPF attempts to help us gather at least 
one new experience in each symbolic 
execution step.

• Virtual execution:
o Defined as a sequence of state transitions 

using 𝜋 𝑠𝑡 with an 𝜖- greedy strategy over 
an observed computation tree, which 
means a computation tree built up by all of 
observed experiences.

o Namely, the virtual execution is not an 
execution of a real program, but a 
simulation of state transitions among states 
that have been already observed.

o Such a simulation takes negligible time to 
run.

Unique Path Finder that discovers a prefix (P1) of
a brand-new execution path by virtual execution, 
which is a run over a computation tree built by 
observed experiences. Symbolic execution that 
follows is guided by the prefix P1 and finds out 
the remaining (P2) of the new execution path.
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Experiments

• Class 1 programs: 
o The worst-case branch behavior is continuous and follows a simple pattern like 

“always True” or “always False”
o These are the programs where WISE is effective, and SPF-WCA works exactly the 

same as WISE.

• Class 2 programs:
o Some or all of branch points have a irregular branch behavior in the worst case.
o the worst-case-leading decision at a branch point can change depending on the scale 

(N), or the time (t) that the branch point is visited.
o WISE cannot handle Class 2 programs efficiently.
o SPF-WCA can be effective for some of them, i.e., when the pattern can be expressed 

in terms of the history-length
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Class 1 example
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Benchmark 1:
Biopython

parewise2: Smith-
Waterman [39]

(N, longest path length) (3,9) (4,12) (5,15) (10,30) (20,60) (30,90) (100,300)

Exhaustive 
search

Paths 127 511 2047 - - - -

Time 0:04 0:18 1:14 - - - -

WISE Paths 1 1 1 1 1 1 1

Time 0:00 0:00 0:00 0:00 0:00 0:00 0:01

PySE Paths 1 1 1 1 1 1 2

Time 0:02 0:02 0:02 0:02 0:02 0:02 0:13

• Exhaustive search: search time exponentially grows

• WISE: small-scale tests predict the worst-case at a larger scale.

• PySE: finds the worst-case within a few trials.



Class 2 example (1/2)

• WISE cannnot handle: GNU grep's worst-case branching behavior shows an irregular pattern 
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GNU grep : 
Boyer-Moore

(N, longest path length) (3,3) (4,3) (5,3) (10,9) (20,18) (30,30) (100,99)

Exhaustive 
search

Paths 4 4 4 40 1093 88573 -

Time 0:00 0:00 0:00 0:01 0:31 43:39 -

WISE Paths 4 4 4 40 1093 88573 -

Time 0:00 0:00 0:00 0:01 0:32 44:24 -



Class 2 example (2/2)

• SPF-WCA may handle, but its performance is sensitive to the length of history.

• PySE can handle it and the length of history is not critical.
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GNU grep : 
Boyer-Moore

(N, longest path length) (3,3) (4,3) (5,3) (10,9) (20,18) (30,30) (100,99)

SPF-WCA trained 
at N=3,4

Paths 1 1 1 9 243 19683 -

Time 0:00 0:00 0:00 0:00 00:07 10:20 -

SPF-WCA trained 
at N=6,7

Paths 1 1 1 1 1 1 1

Time 0:00 0:00 0:00 0:00 0:00 0:00 0:00

PySE pre-trained 
at N = 5

Paths 2 2 2 2 2 3 276

Time 0:11 0:11 0:11 0:11 0:12 0:20 48:21

PySE pre-trained 
at N = 10

Paths 2 2 2 1 2 3 82

Time 0:11 0:11 0:11 0:02 0:12 0:20 13:03



Concluding remarks

• PySE uses symbolic execution to run a program and collects behavioral 
information.

• PySE then updates a branching policy using the collected behaviors based 
on a reinforcement learning framework.

• By iterating the symbolic execution and policy update, PySE gradually 
increases the length of an execution path towards a path of the worst-case 
complexity. 

• In various Python programs and scales, PySE can effectively find a path of 
worst-case complexity and has benefits against exhaustive search and
WISE-like algorithms. 
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Thank you!
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