PySE: Automatic Worst-Case Test Generation by
Reinforcement Learning

Jinkyu Koo, Charitha Saumya, Milind Kulkarni, and Saurabh Bagchi
Electrical and Computer Engineering

Purdue University

{kooj, cgusthin, milind, sbagchi}@purdue.edu

PURDUE

Stress testing

* Stress testing
o Testing the software beyond its normal operational capacity, and investigates
the behavior of a program when subjected to heavy loads.
* The goal of such tests
o To identify performance bottlenecks
o To identify algorithmic complexity attacks
o To identify scale-dependent bugs

* The key challenge

o How to find the input that can lead to the worst-case complexity.

Symbolic execution

* Runs a program using symbolic variables as
inputs, instead of concrete values.

* Can explore all the possible execution paths,
including the ones of
worst-case complexity.

* On each path that is executed, symbolic
execution collects a
set of symbolic conditions, called a path
condition.

* Then, it invokes a constraint solver, such as
OpenSMT [7] or Z3 that generates concrete
test input values.

* Path explosion: the number of paths to
search increase exponentially with the size of
the input.

if x>y:

if y>z:

def function(x, v, z):

True

true/ ¥

(x>y) and (y>z)

{

alse
Tru

False

Q2>
J

(x<=y) and (y<=z)

J

|

Path conditions

WISE-like algorithms

* WISE[1] and SPF-WCA[2]

o Learn a branching policy that results in a path of the worst-case complexity
for small input sizes by using exhaustive search, and

o Then apply the learned branching policy to perform a guided search for a
large input size.

The worst-case branching policy

-
-
m
o
[]
o
[]
o
[]
H
[]
H
0

Insertion sort: always True

Branching
decision

False -

The t-th branch condition

[1] Jacob Burnim, Sudeep Juvekar, and Koushik Sen. Wise: Automated test generation for worst-case complexity. ICSE '09
[2] Kasper Luckow, Rody Kersten, and Corina Pasareanu. Symbolic complexity analysis using context-preserving histories. ICST’17

Limitations of WISE-like algorithms

e Assumes a continuous program behavior across scales

o Some conditional blocks are activated only when the input size is larger than a
certain threshold.

* Irregular branching policy

Branching
decision

True -

False 1

Ne e NN el NN LD

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
The t-th branch condition

Dijkstra implemented with min-
priority queue: no simple way to
describe the worst-case
branching policy

5/20

Limitations of WISE-like algorithms

e Assumes a continuous program behavior across scales

o Some conditional blocks are activated only when the input size is larger than a
certain threshold.

*Irrec . Can we avoid/minimize these issues of
white-box based approaches for

= 1 i
£35 large-scale test generation?
E QD False{ ¢ eyt & ¥ herooot ¥ et dooex | priority queue: no simple way to
— 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 describe the worst-case

The t-th branch condition branching policy

PySE Solution approach

* PySE: learns the worst-case branching policy using Q-learning, a
model-free reinforcement learning.

o Uses symbolic execution to collect behavioral information of a given
branching policy

o Updates the policy based on Q-learning.

Observe the behavior of a branching policy, i.e., the length of a path

Symbolic Policy
execution update

A

Give a new branching policy

The main objective of PySE

* To find out a branching policy

1t (s,)for a given state s;at the t-th branch

condition that it encounters while a
program is being symbolically executed.

o The branching policy m(s;) determines a
branching decision a; = 7(s;) €
{True, False}, which we also call action.

o The state s; mainly consists of the current
branch condition, previous L branch
conditions, and actions taken there.

v’ L: the history length
o The branching policy (s;) continue
evolving in

such a way that the length of an execution
path increases.

Cl1 and C2:

branch conditions.

B1: a box that

bounds information
required to define a
state at C1 (L = 2).

P1, P2, and P3:
execution paths

The state s; at branch condition C1

8/20

Workflow of PySE

N symbolic Symbolic Policy
variables Execution Update
‘ Unique \
| Path Finder !

e Step 1: (SYMBOLIC EXECUTION)

o Execute a program by the branching policy m(s;).

o Collect resulting behavioral information such as which branch points the
program visits, actions taken at each branch, and feasibilities of the actions.

» Step 2: (POLICY UPDATE)

o Update the branching policy m(s;) in a way that an undesirable action that
caused a program to terminate quickly can be avoided in the future.

v Q-learning

Branching policy m(s;)
* Design the branching policy (s;) as:

m(sy) = argmax Q(S¢, a;)
at

* Q(s¢, a;) is made from an artificial neural network (ANN), whose
inputs are s;and its output layer produces two values, Q(s¢, True)
and Q(s;, False).

om(sy)=True if Q(s;, True) = Q(s, False).
om(s;)= False if Q(s;, True) < Q(s¢, False).

State representation

* St = (Sto, St1s -+ StL)
O S¢;: an integer vector encoding the (t — [)-th branch condition and the action
taken there.

e e 150, €2 murber 146, C3: ine number 89 Encoding of a state when L = 2.
| T A o F2: unique identifier for each branch
b @ B mm point (.e.g. line number) |
. o o 1 b sy o F3: action taken at the branch point (
é@ e 1 = TRUE, O = FALSE)
Sto : @S e Lt t 2 1 P Spo
""""""" Encoding » St = (St0r St1, St2)

11/20

How to update the branching policy (1/3)

* Symbolic execution takes action a;at a given state s;and
observes its consequence.
o Whether the execution path is still feasible.
o Feasibility can be checked by using a constraint solver like Z3.

* Depending on the feasibility, the consequence of the action a;at the
state s;is scored by a reward 7;:
oty = 1 if feasible, and r; = P if not feasible.

o P = —20 so that the infeasible decision is more distinguishable from
the feasible one.

How to update the branching policy (2/3)

* We want m(s;) to converge to the optimal branching policy w*(s;)
that maximizes the expected sum of future rewards, E(Z?{":trk ‘St).

o T denotes the last branch condition before a program terminates normally or
falls in an infeasible path condition.

o Thus, equivalently, it maximizes the length of a feasible execution path.

* Define the optimal action-value function Q*(s¢, a;) as the maximum
expected sum of future rewards, after taking action a;at a state s;:

Q" (st ar) = max E(Z£=t7"k ‘St)

* Q" (s, ap) can be re-written recursively as:
Q*(s¢yar) = E(ry + max Q" (Se41, Ap41))

At+1

How to update the branching policy (3/3)

* We try to learn Q" (s, a;) by a sample mean Q(s¢, a;):
Q(sp ar) « (1 —a)Q(s, ar) + a(ry + max Q(Se41, Ary1))

At+1
o« is called a learning rate.

o By the law of large numbers, Q(s;, a;) can converge to Q*(s;, a;) after
iterations for a sufficiently small value of a.

o Such an update for learning Q (s, a;) without knowing the underlying
probability distribution model is referred to as Q-learning in the
reinforcement learning literature.

Q-network architecture

* In practice, updating Q (s, a;) separately for
each (s, a;) is unattainable.

o This is because the state is a multi-dimensional
integer vector and thus the number of possible
states can be too large.

* Thus, a function approximator is commonly
used to estimate the function Q(s;, a;) with
the limited number of observations for
state-action pairs.

* PySE also represents Q(s¢, a;) by using an
ANN-based function approximator, which
we refer to as a Q-network.

Q(s¢, True) Q(s¢, False)

T

|

Linear combination

7'y
heo her

LSTM 1« LSTM |«

ey he

cell

Ct2

CtL

Algorithm of PySE

Algorithm 1 Basic mode of PySE

9:
10:
11:

12

13:
14:
15:
16:

]
2
3
4:
5:
6
7
8

. procedure SYMBOLIC EXECUTION

for ¢t from 1 to 1" do
Choose a number « randomly over [0, 1].
if u < € then

else
ar = m(8¢).
Execute a¢, and observe r: and s¢+1.
if the experience e; = (s¢, at, 7+, St+1) is new then
Add e; in E.
Delete old experiences in £ to keep |E| < Ne.
: procedure POLICY UPDATE
Sort experiences in £ in a random order.
for ¢ from 1 to |F| do
Read the i-th experience from E.
Update weights.

Choose a; randomly. > e-greedy.

e Exploration of a new path by
e-greedy strategy.

o With € probability, take
random action instead of

(sg).
e Symbolic Execution step

collects what is called the
experience.

o er = (S¢, ¢, Tt Se41)

* Policy Update step uses
these experiences to update
the Q-network.

Unique Path Finder (UPF)

* UPF attempts to help us gather at least
one new experience in each symbolic
execution step.

* Virtual execution:

o Defined as a sequence of state transitions
usin%n(st) with an e- greedy strategy over
an observed computation tree, whic
means a computation tree built up by all of
observed experiences.

o Namely, the virtual execution is not an
execution of a real program, but a
simulation of state transitions among states
that have been already observed.

o Such a simulation takes negligible time to
run.

® OO0

Branch conditions (BCs)
belonging to stale states

A new BC found
by virtual execution

New BCs found
by symbolic execution

Unique Path Finder that discovers a prefix (P1) of
a brand-new execution path by virtual execution,
which is a run over a computation tree built by
observed experiences. Symbolic execution that
follows is guided by the prefix P1 and finds out
the remaining (P2) of the new execution path.

17/20

Experiments

* Class 1 programes:

o The worst-case branch behavior is continuous and follows a simple pattern like
“always True” or “always False”

o These are the programs where WISE is effective, and SPF-WCA works exactly the
same as WISE.

* Class 2 programs:
o Some or all of branch points have a irregular branch behavior in the worst case.

o the worst-case-leading decision at a branch point can change depending on the scale
(N), or the time (t) that the branch point is visited.

o WISE cannot handle Class 2 programs efficiently.

o SPF-WCA can be effective for some of them, i.e., when the pattern can be expressed
in terms of the history-length

Class 1 examp\e
I T A R A R A

Exhaustive Paths 2047
search .
Benchmark 1: Time 0:04 0:18 1:14 - - - -
Biopython WISE Paths 1 1 1 1 1 1 1
parewise2: Smith-

Waterman [39] Time 0:00 0:00 0:00 0:00 0:00 0:00 0:01

PySE Paths 1 1 1 1 1 1 2
Time 0:02 0:02 0:02 0:02 0:02 0:02 0:13

* Exhaustive search: search time exponentially grows

* WISE: small-scale tests predict the worst-case at a larger scale.

e PySE: finds the worst-case within a few trials.

19/20

Class 2 example (1/2)

I T A M T

Exhaustive Paths 1093 88573
GNU grep : search]
Boyer-Moore Time 0:00 0:00 0:00 0:01 0:31 43:39 -
WISE Paths 4 4 4 40 1093 88573 -
Time 0:00 0:00 0:00 0:01 0:32 44:24 -

* WISE cannnot handle: GNU grep's worst-case branching behavior shows an irregular pattern

20/20

Class 2 examp\e (2/2)
I N T T N T U T

SPF-WCA trained Paths 19683
GNU grep : at N=3 4 _
Boyer-Moore : Time 0:00 0:00 0:00 0:00 00:07 10:20 i

SPF-WCA trained Paths 1 1 1 1 1 1 1
L= Time 0:00 0:00 0:00 0:00 0:00 0:00 0:00

PySE pre-trained Paths 2 2 2 2 2 3 276
dell==2 Time 0:11 0:11 0:11 0:11 0:12 0:20 48:21

PySE pre-trained Paths 2 2 2 1 2 3 82
gell =00 Time 0:11 0:11 0:11 0:02 0:12 0:20 13:03

* SPF-WCA may handle, but its performance is sensitive to the length of history.
* PySE can handle it and the length of history is not critical.

21/20

Concluding remarks

* PySE uses symbolic execution to run a program and collects behavioral
information.

PySE then updates a branching policy using the collected behaviors based
on a reinforcement learning framework.

* By iterating the symbolic execution and policy update, PySE gradually
increases the length of an execution path towards a path of the worst-case

complexity.
* |n various Python programs and scales, PySE can effectively find a path of

worst-case complexity and has benefits against exhaustive search and
WISE-like algorithms.

Thank you!

