
PySE: Automatic Worst-Case Test Generation by
Reinforcement Learning

Jinkyu Koo, Charitha Saumya, Milind Kulkarni, and Saurabh Bagchi
Electrical and Computer Engineering

Purdue University

{kooj, cgusthin, milind, sbagchi}@purdue.edu

1

Stress testing

• Stress testing
o Testing the software beyond its normal operational capacity, and investigates

the behavior of a program when subjected to heavy loads.

• The goal of such tests
o To identify performance bottlenecks

o To identify algorithmic complexity attacks

o To identify scale-dependent bugs

• The key challenge
oHow to find the input that can lead to the worst-case complexity.

2/20

Symbolic execution

• Runs a program using symbolic variables as
inputs, instead of concrete values.

• Can explore all the possible execution paths,
including the ones of
worst-case complexity.

• On each path that is executed, symbolic
execution collects a
set of symbolic conditions, called a path
condition.

• Then, it invokes a constraint solver, such as
OpenSMT [7] or Z3 that generates concrete
test input values.

• Path explosion: the number of paths to
search increase exponentially with the size of
the input.

def function(x, y, z):
….
if x>y:

….
if y>z:

….
….

x>y

y>z y>z

True False

True False
True

False

(x>y) and (y>z) (x<=y) and (y<=z)

Path conditions

3/20

WISE-like algorithms
• WISE[1] and SPF-WCA[2]

o Learn a branching policy that results in a path of the worst-case complexity
for small input sizes by using exhaustive search, and

o Then apply the learned branching policy to perform a guided search for a
large input size.

Insertion sort: always True

The worst-case branching policy

4/20

[1] Jacob Burnim, Sudeep Juvekar, and Koushik Sen. Wise: Automated test generation for worst-case complexity. ICSE ’09
[2] Kasper Luckow, Rody Kersten, and Corina Pasareanu. Symbolic complexity analysis using context-preserving histories. ICST’17

Limitations of WISE-like algorithms

• Assumes a continuous program behavior across scales
o Some conditional blocks are activated only when the input size is larger than a

certain threshold.

• Irregular branching policy

Dijkstra implemented with min-
priority queue: no simple way to
describe the worst-case
branching policy

5/20

Limitations of WISE-like algorithms

• Assumes a continuous program behavior across scales
o Some conditional blocks are activated only when the input size is larger than a

certain threshold.

• Irregular branching policy

Dijkstra implemented with min-
priority queue: no simple way to
describe the worst-case
branching policy

6/20

Can we avoid/minimize these issues of
white-box based approaches for

large-scale test generation?

PySE Solution approach

• PySE: learns the worst-case branching policy using Q-learning, a
model-free reinforcement learning.
oUses symbolic execution to collect behavioral information of a given

branching policy

oUpdates the policy based on Q-learning.

7/20

Symbolic
execution

Policy
update

Observe the behavior of a branching policy, i.e., the length of a path

Give a new branching policy

The main objective of PySE

• To find out a branching policy
𝝅(𝒔𝒕)for a given state 𝒔𝒕at the 𝑡-th branch
condition that it encounters while a
program is being symbolically executed.
o The branching policy 𝜋(𝑠𝑡) determines a

branching decision 𝒂𝒕 = 𝜋 𝑠𝑡 ∈
{𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}, which we also call action.

o The state 𝑠𝑡 mainly consists of the current
branch condition, previous 𝐿 branch
conditions, and actions taken there.
✓ 𝐿: the history length

o The branching policy 𝜋(𝑠𝑡) continue
evolving in
such a way that the length of an execution
path increases.

The state 𝑠𝑡 at branch condition C1

8/20

Workflow of PySE

• Step 1: (SYMBOLIC EXECUTION)
o Execute a program by the branching policy 𝜋 𝑠𝑡 .
oCollect resulting behavioral information such as which branch points the

program visits, actions taken at each branch, and feasibilities of the actions.

• Step 2: (POLICY UPDATE)
oUpdate the branching policy 𝜋 𝑠𝑡 in a way that an undesirable action that

caused a program to terminate quickly can be avoided in the future.
✓Q-learning

9/20

Branching policy 𝜋 𝑠𝑡

• Design the branching policy 𝜋 𝑠𝑡 as:

𝜋 𝑠𝑡 = argmax
𝑎𝑡

𝑄(𝑠𝑡, 𝑎𝑡)

• 𝑄(𝑠𝑡 , 𝑎𝑡) is made from an artificial neural network (ANN), whose
inputs are 𝑠𝑡and its output layer produces two values, 𝑄(𝑠𝑡, 𝑇𝑟𝑢𝑒)
and 𝑄 𝑠𝑡, 𝐹𝑎𝑙𝑠𝑒 .
o𝜋 𝑠𝑡 = 𝑇𝑟𝑢𝑒 if 𝑄 𝑠𝑡 , 𝑇𝑟𝑢𝑒 ≥ 𝑄 𝑠𝑡 , 𝐹𝑎𝑙𝑠𝑒 .
o𝜋 𝑠𝑡 = 𝐹𝑎𝑙𝑠𝑒 if 𝑄 𝑠𝑡 , 𝑇𝑟𝑢𝑒 < 𝑄 𝑠𝑡 , 𝐹𝑎𝑙𝑠𝑒 .

10/20

State representation
• 𝑠𝑡 = (𝑠𝑡0, 𝑠𝑡1, … , 𝑠𝑡𝐿)

o 𝑠𝑡𝑙: an integer vector encoding the (𝑡 − 𝑙)-th branch condition and the action
taken there.

• Encoding of a state when L = 2.
o F2: unique identifier for each branch

point (e.g. line number)

o F3: action taken at the branch point (
1 = TRUE , 0 = FALSE)

11/20

How to update the branching policy (1/3)

• Symbolic execution takes action 𝑎𝑡at a given state 𝑠𝑡and
observes its consequence.
oWhether the execution path is still feasible.

o Feasibility can be checked by using a constraint solver like Z3.

• Depending on the feasibility, the consequence of the action 𝑎𝑡at the
state 𝑠𝑡is scored by a reward 𝑟𝑡:
o 𝑟𝑡 = 1 if feasible, and 𝑟𝑡 = 𝑃 if not feasible.

o𝑃 = −20 so that the infeasible decision is more distinguishable from
the feasible one.

12/20

How to update the branching policy (2/3)

• We want 𝜋 𝑠𝑡 to converge to the optimal branching policy 𝜋∗ 𝑠𝑡
that maximizes the expected sum of future rewards, 𝐸 σ𝑘=𝑡

𝑇 𝑟𝑘 𝑠𝑡 .
o T denotes the last branch condition before a program terminates normally or

falls in an infeasible path condition.
o Thus, equivalently, it maximizes the length of a feasible execution path.

• Define the optimal action-value function 𝑄∗(𝑠𝑡 , 𝑎𝑡) as the maximum
expected sum of future rewards, after taking action 𝑎𝑡at a state 𝑠𝑡:

𝑄∗ 𝑠𝑡, 𝑎𝑡 = max
𝜋

𝐸 σ𝑘=𝑡
𝑇 𝑟𝑘 𝑠𝑡

• 𝑄∗(𝑠𝑡 , 𝑎𝑡) can be re-written recursively as:
𝑄∗ 𝑠𝑡 , 𝑎𝑡 = 𝐸(𝑟𝑡 +max

𝑎𝑡+1
𝑄∗ 𝑠𝑡+1, 𝑎𝑡+1)

13/20

How to update the branching policy (3/3)

• We try to learn 𝑄∗(𝑠𝑡 , 𝑎𝑡) by a sample mean 𝑄(𝑠𝑡 , 𝑎𝑡):
𝑄 𝑠𝑡 , 𝑎𝑡 ← 1 − 𝛼 𝑄 𝑠𝑡 , 𝑎𝑡 + 𝛼(𝑟𝑡 +max

𝑎𝑡+1
𝑄 𝑠𝑡+1, 𝑎𝑡+1)

o𝛼 is called a learning rate.

oBy the law of large numbers, 𝑄 𝑠𝑡 , 𝑎𝑡 can converge to 𝑄∗ 𝑠𝑡 , 𝑎𝑡 after
iterations for a sufficiently small value of 𝛼.

o Such an update for learning 𝑄 𝑠𝑡 , 𝑎𝑡 without knowing the underlying
probability distribution model is referred to as Q-learning in the
reinforcement learning literature.

14/20

Q-network architecture

• In practice, updating 𝑄 𝑠𝑡 , 𝑎𝑡 separately for
each 𝑠𝑡 , 𝑎𝑡 is unattainable.
o This is because the state is a multi-dimensional

integer vector and thus the number of possible
states can be too large.

• Thus, a function approximator is commonly
used to estimate the function 𝑄 𝑠𝑡 , 𝑎𝑡 with
the limited number of observations for
state-action pairs.

• PySE also represents 𝑄 𝑠𝑡 , 𝑎𝑡 by using an
ANN-based function approximator, which
we refer to as a Q-network.

15/20

Algorithm of PySE

• Exploration of a new path by
𝜖-greedy strategy.
o With 𝜖 probability, take

random action instead of
𝜋 𝑠𝑡 .

• Symbolic Execution step
collects what is called the
experience.
o 𝑒𝑡 = (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)

• Policy Update step uses
these experiences to update
the Q-network.

16/20

Unique Path Finder (UPF)

• UPF attempts to help us gather at least
one new experience in each symbolic
execution step.

• Virtual execution:
o Defined as a sequence of state transitions

using 𝜋 𝑠𝑡 with an 𝜖- greedy strategy over
an observed computation tree, which
means a computation tree built up by all of
observed experiences.

o Namely, the virtual execution is not an
execution of a real program, but a
simulation of state transitions among states
that have been already observed.

o Such a simulation takes negligible time to
run.

Unique Path Finder that discovers a prefix (P1) of
a brand-new execution path by virtual execution,
which is a run over a computation tree built by
observed experiences. Symbolic execution that
follows is guided by the prefix P1 and finds out
the remaining (P2) of the new execution path.

17/20

Experiments

• Class 1 programs:
o The worst-case branch behavior is continuous and follows a simple pattern like

“always True” or “always False”
o These are the programs where WISE is effective, and SPF-WCA works exactly the

same as WISE.

• Class 2 programs:
o Some or all of branch points have a irregular branch behavior in the worst case.
o the worst-case-leading decision at a branch point can change depending on the scale

(N), or the time (t) that the branch point is visited.
o WISE cannot handle Class 2 programs efficiently.
o SPF-WCA can be effective for some of them, i.e., when the pattern can be expressed

in terms of the history-length

18/20

Class 1 example

19/20

Benchmark 1:
Biopython

parewise2: Smith-
Waterman [39]

(N, longest path length) (3,9) (4,12) (5,15) (10,30) (20,60) (30,90) (100,300)

Exhaustive
search

Paths 127 511 2047 - - - -

Time 0:04 0:18 1:14 - - - -

WISE Paths 1 1 1 1 1 1 1

Time 0:00 0:00 0:00 0:00 0:00 0:00 0:01

PySE Paths 1 1 1 1 1 1 2

Time 0:02 0:02 0:02 0:02 0:02 0:02 0:13

• Exhaustive search: search time exponentially grows

• WISE: small-scale tests predict the worst-case at a larger scale.

• PySE: finds the worst-case within a few trials.

Class 2 example (1/2)

• WISE cannnot handle: GNU grep's worst-case branching behavior shows an irregular pattern

20/20

GNU grep :
Boyer-Moore

(N, longest path length) (3,3) (4,3) (5,3) (10,9) (20,18) (30,30) (100,99)

Exhaustive
search

Paths 4 4 4 40 1093 88573 -

Time 0:00 0:00 0:00 0:01 0:31 43:39 -

WISE Paths 4 4 4 40 1093 88573 -

Time 0:00 0:00 0:00 0:01 0:32 44:24 -

Class 2 example (2/2)

• SPF-WCA may handle, but its performance is sensitive to the length of history.

• PySE can handle it and the length of history is not critical.

21/20

GNU grep :
Boyer-Moore

(N, longest path length) (3,3) (4,3) (5,3) (10,9) (20,18) (30,30) (100,99)

SPF-WCA trained
at N=3,4

Paths 1 1 1 9 243 19683 -

Time 0:00 0:00 0:00 0:00 00:07 10:20 -

SPF-WCA trained
at N=6,7

Paths 1 1 1 1 1 1 1

Time 0:00 0:00 0:00 0:00 0:00 0:00 0:00

PySE pre-trained
at N = 5

Paths 2 2 2 2 2 3 276

Time 0:11 0:11 0:11 0:11 0:12 0:20 48:21

PySE pre-trained
at N = 10

Paths 2 2 2 1 2 3 82

Time 0:11 0:11 0:11 0:02 0:12 0:20 13:03

Concluding remarks

• PySE uses symbolic execution to run a program and collects behavioral
information.

• PySE then updates a branching policy using the collected behaviors based
on a reinforcement learning framework.

• By iterating the symbolic execution and policy update, PySE gradually
increases the length of an execution path towards a path of the worst-case
complexity.

• In various Python programs and scales, PySE can effectively find a path of
worst-case complexity and has benefits against exhaustive search and
WISE-like algorithms.

22/20

Thank you!

23/20

